SIBO 'C' Software Development Kit

OBJECT ORIENTED PROGRAMMING GUIDE

Version 2.01

August 23, 2000

(C) Copyright Psion PLC 1993

All rightsreserved. This manual and the programs referred to herein are copyrighted works of Psion PLC,
London, England. Reproduction in whole or in part, including utilization in machines capable of
reproduction or retrieval, without express written permission of Psion PLC, is prohibited. Reverse
engineering is also prohibited.

The information in this document is subject to change without notice.

Psion and the Psion logo are registered trademarks, and Psion, Psion MC, Psion HC, Psion Series 3 and
Psion Series 3a are trademarks of Psion PLC.

TopSpeed is aregistered trademark of Clarion Software Corporation. Intel 8086 and 80286 are registered
trademarks of Intel Corporation. IBM, IBM XT and IBM AT are registered trademarks of |nternational
Business Machines Corp. Microsoft and M S-DOS are registered trademarks of Microsoft Corporation.
Apple and Macintosh are registered trademarks of Apple Computer Inc. VAX and VMS are registered
trademarks of Digital Equipment Corporation. Brief isaregistered trademark of Underware Inc. Psion PLC
acknowledges that some other names referred to are registered trademarks.

CONTENTS

I oo 16 Tox o 1-1

BaSIC COMCEPLScuvrereeetieieiree et bbb
ClBSSES ...t
ODJECL Creation.........cooveceereeceeereee e
Component OBJECESccuveecerrere e
Object deStrUCioN........cceveeeeeerrere et

(O = o] == TR

Category handles and category numbers

M ESSAGE PASSING..ererereeerrseesrsemssreesessese s ses s st s bbb

M essages and message numbers
ODbJeCt NANAIES ...
M ethod fUNCLION PrOtOLYPESc.cveereeerreecirer ettt

The basiC COMPONENT ODJECES.......c.vricrrieeiiee e
The appliCatioN MABNAGETccoceieeeee ettt bbb s st atees
The window server object
RESOUICES ...ttt bbb bbb bbb bbb n b renenas
THe COMMANA MANAGETcuieireeereeeeerireseesie st ss s s se st sssssssesesssssssssesnsnses
ClIENt WINAOW.......oeeeiieeireieieirereirsee e eaes

THETEQUITEH FILES ...ttt et a bbbt n s
(0 (=0 Y0 11 1= TR
SOUICEFIlES ..o

APPlICation RESOUICE FIlE ...
SyStem reSoUrCE filcuiueiirerrerere s
MisCellanEoUS fIlES......c.cocveerrreireirre e

2 Building an Object Oriented APPHCALIONccovcieirirerrereeseresesee s ssssssssessssssssessessans 2-1

AN eXAMPIE BPPITICELION......cuevrerieceeerireeeeeresesee s ss st ea e s st s e sssssessesssnssssesnsnsesnennnns 2-2
THE EXAMPIE SOUICE..... ..ot bbb 2-2
Building the example appliCatiON.........cccveereeeneerere e 2-5

3BUIldING @ DYNAMIC LIBIArY ..ot

AN EXAMPIE DY L.ttt s
The example source.................
Building the example DYL
USING thE EXAMPIE DY L ...ttt sttt

A DYL that suppliesthe ROOT ClaSS.......cccomminierriceierissssistsesssssessesssse st sssssssssssssssssesssssns 34

Building DY LSiINt0 an @ppliCatioN........ccveceeiririerieiresesesessstessessssssssesssssssessssssssssssssssssssssesssnsans 35
DD I o o {1 = L OO
Accessing abuilt-inDYL

4 AN HWIM EXaMpPle- HEITO WOT Q... ses s 4-1
THE CALEGOIY Tl 4-3
The resource eXIEMAIS I ... 4-3
THE TESOUICE FIl ...ttt bbbt 4-4
THE SOUICE COUR.......oueuieeiete ettt bbbt bbbt 4-5
Building the @ppliCation ...t s e 4-6

5 Commands and COMMEANT MENUS..........ouururirerieireieireieeei e seas s bbbt saes 5-1
THe COMMEANA MANAGET........cceeureeeerererretere s sss et sss e ses st e se s st s sesssnsessssansessesssnsesaens 51
Adding COMMENA OPLIONSccceuriereeirireree s sse st sssss e sssssessesssnsesennnns 52
Sharing Method fUNCLION COUE...........c.ciuriirricirere e 55
Changing the text Of &N OPLION.......c.occcrrcre s 56
Disabling @ MENU OPLION ...t s 58
Changing the number of OptioNS iN AMENU.........ccceerceereccerece e aeeees 58
Displaying aStatuUS WINGAOWccveeeurineeieeiiessiessesseessessss e ssssssssessssssssessssssssessssssssesssssssesssssans 59
Application-speCifiC iNtialiSAtiON.........cccveeirerecerecee s nnas 510
REPIACING AIMENU DEN.......cceeieiccesece st s et ee s s s 510
SUDIMEBNUS.....c.oeeerteeteeeseesessises ettt ea e bbb s bbb bbbttt 511
SNULAOWN MESSAGESocueeeeeiieieteieeses et es s s 512

LI AV T o [0V T
TREWIN CIESS ...ttt ettt ettt se e

Class definition

Propertyccevevevvnneennnenene

WINCOW FlAGS.....eieecteieccte et s s anten
WIN MEENOMS.......cveeeiie et sttt 6-4

Create the Window's WiNAOW SEIVEr Jata.........coureeererrerercireeeireeesneesisessisessesessessssesssessssssesns 6-4

L= 1 0)Y TP

Systeminitiated redraw

ApPPlicatioN-INItIAEE FEOIBIV.........crieeriecertieirie et

S VISIDIHITY vttt

Set window highlight..............

Sense start id for NEIP ...

Calculate awindow position

SEt WINAOW POSITIONcecuveiicecieirese st sesss e ssssssssesssssesens

PrOCESS A KEYPIESS......ccveerieeceririresie sttt sttt a s s st sens
Deferred WIN MEINOUS........co e sesss e sesns s s s snssense 6-6

TR = OO 6-7

Set property........
Sense property
Draw to existing GC

The BWIN bordered window class
Class defiNition ... s
Property...........

BWIN methods......
Draw border........
Update border

THELODGER ClBSS......cucitiiiiiiciiteice sttt sttt st b e e bs st e e b et bs b asesba st sbssbasesnin
Class definition ...
PrOPEIY ...t

LODGER MENOOS........cceiieiiereeiceeressee e
TRz TS T

SEt VISIDIHITY e
Create GC and draW.......coeeeeeeveciseeceseeeeesee s
CheCK CONENT ISVAITH......ceceiieeiceecceec et be e b

Deferred LODGER MELNOUS.........ccucuierirereeereeireeisee ettt sess s s sesss s ssssesssessssssssans
Sense required width
UPAALE FIl@ NAME ...ttt snns

The draw/redraW MECNANISIM........cieieicee e st se bbb e stne
RESIZING QWINUOW........curveiriiririeiseseisesesesis s esesssssssessssse s sssssesessssssssesssssessasssssesssssssssssessnsess

WINAOW EIMPNESIS ..o b

T DIAIOGS. .. eeveeeeteee ettt bR R R 7-1

THE DLGCHAIN ClBSS......ieiiiiritirestereiciseie ittt 7-1

THE DLGBOX ClESS.....cuiiiucieirirecieireseeisisesesie ettt bbb
PrOPEITY ...t
Dialog box flags
DLGBOX_flagS....cccovveerererririsicineresesesesseeseens
DLGBOX_ITEM_ flags.

DL GBOX MENOGS. ceeuireeeireieieee ettt bbbt 7-6
CONSISLENCY CNECKSvuvieticteetreeeeieeti s 7-6
DYNaMIC iNITIAIISAION.coureeereeeserreereee et 7-7
Handle key input
Set item by index
SENSEIEM BY INUEX......cceceeeccesee st e tes 7-8
SENSE ILEM NBNAIE ..ottt 7-8
Sense item index
DM aN ITOM..eceee s
[0 Tox = 1 = 1 O
Change the prompt fOr @N ITEM.........cveee s 7-9
SELITEM FlagS ...

Move focusto specified item
Add 8N M ..
Add anitem by resourceid.........ccccovveveerreveenninnns
Replace an existing iteM........cccveeeerveresnenenseseseeens
SpeCify MINIMUM WIGLNS.........cciieceercerreee s snssses
SEL SIZE OF AIAI0G. .. ereereeeretree s
Display 'dimmed' message
Sense start id for HelP ...
HaNAIE @KEYPIESS ...ttt bbbt

Deferred DLGBOX MELhOUS........cc.curiureirireireeiree et sess st 7-15
[temM ChaNQEd MESSAGE........ccovueereeeteirre ettt a st 7-15
FOCUS Changed MESSAgEccuvuereeericistr sttt s s sens 7-15

Launch sub-dialog if reqUIred............cccveenecrneeerneennernseeneeeneeeneeens
Create non-system dialog item

USING il Og DOXES.......coeeecictriicicte ettt ettt b s b s st s s nais
Default dialog behaviour.......
Dialogs and resourcefiles.....
Launching adiaog.....
SIMPIE AIAIOGS. ...t ssesseseasaessaennens
Dynamically initialised dialogs
RErieving ial0g FESUILS ...t s
Dialogs With and WithOUE WA T ... s 7-21
Controlling the width of adialog
ESTU 0T [oo ORI

Push buttons and aCtiON [ISES........ccuiuiieieceicesceescee ettt 87
Initialisation.........ccoeeueenee.
Setting and sensing
[0 [00 =SOSR 89
LT TES = (o] VT 89
S TS LU o OO OOV 810
SENSING vttt b bt e et et e R b e R b b s R AR R b bRt st et en Rt tae s 8-10
LONG NUMEITC BAITO ...ttt sttt sas et se bbbt bs st se b e s s e be s sn b e bssnna 8-10
Initialisation
=1 T TR
TS 1S T P
[NEEYEN NUIMENTC BAITON......coeceiciece ettt 811
Initialisation
SEtting...ccvveerreerreerreennee
SENSING vttt ettt b bbbt e R s e R b b s ARt e R b b s A At n et et en Rt tae s
WWORD NUMETTC BITOT ...ttt ettt se bbb st a b et b s se et e 813
[T E =TSz (o) 1O 813

RANGE NUMENTC BAITON ...t s 814
E TR = o) OO STTT 814
SEELING .ottt 814
SENSING vttt et b bbbt e Rt s e R b b s A AR R bt s e At n bt en Rt tae s 815

[0z T a0 [ool g1 =o [(o PP TPTRTR 815

Initialisation

Latitude/LoNgitude BAITOT...........ccceieceeesecie sttt s s 818
[T A1 SBLION.....teetietee ettt bbb bbbt 818
=1 T TR 818

iv

(LN A= 1S =0 [(o] SR
Initialisation

FilENAME CNOICE LISE....oieceeececcee ettt bbb st be e s se b s et e se b be s e
L= RS2 [T o] T

D ACHIVE ODJECLS ...ttt bbb 9-1

Active objects and asynNCNroNOUS FEQUESES ... ssesessessssesseessesenns 91
ACHVE ODJECE PIIOMTIES ...t st 92
APPIICALiON FESPONSIVENESS......cocueerecreireiecte sttt esss s s st sssss s sesssassessssssssens 92
Background processing
EITOIS ..o

A SIMPIE TIMIEL ...ttt e s et s e se e s s s st s s s ansnsnennsnsesnennas 93

10 Error Handling and Error RECOVENY.......cvrrvnereeenerensesenesessessenennens
Errors during initialiSation.........coceveeeereeneneeneneeneseneeeneeeseieenseeenns

GENEral EITON TECOVENYcoueecrerrreeeereeeeseieesesessesessssese s sessenens
The roll-back PrinCiple ...
Roall-back for component ObjEeCtSccccceveveceeeecceeireenas
Other resources in an object's property
USING the CLEANUP HISE ...ttt s s st ss s ess st s snnns

INteractions With SYStEM COUE........cviiieieirrcrr et nanees

11 File-basetd APPIICALIONScccurvreieriereresee st sesse st s s s st s s s anaeseensnsesaens
I 0 TR = o) o T

Opening and Creating fIlES ..ot
SWItCNFITES MESSAGEScveeeeerec e

SAVING THES oot
Application termination
SHULAOWN MESSAQEScucvvererererreiesie e sessesas e ss st s st ss s sss st ss s assessssassesssssssens

2 o T VAT Vo [0 T

INtroduCtioN 0 EDWIN ..ottt s
Dialogs and edit windows contrasted..........ccoeerereenrennnns
The NOTES example program..........cceeeeeeneresesesesssessnens
The “Hello World” program for edit windows
The EHELLO category fil.......couemererererseneeseeneeene
Initialisation Code iN EHELLO.......coeeirsceie et
Other COOB TN EHELL ...ttt e et

SIMPIEUSE OFf EDWIN ...ttt n st
Initialising an instance of EDWIN
Thelandlord of the edit WINAOW ...
The IN_EDWIN and IN_EDWIN_X data StIUCES.........cceriererierirereeeineeeineeeiseseesessesesseesseneens
Thelg_set_id posmethod.......cccccooevrerrrerreneerereeeceeeens
Other edit window initialisation flags
A note onthe CONTENTSfieldinthe IN_EDWIN struct
Values of special charactersinthetextooeveeeceivevcceneseeeeeeeeens
A noteonthe MAXLEN field inthe IN_EDWIN struct

THEWN_SENSE MELNOU ...ttt s s
TheWN_SEt MELNOM ...

Thewn_Key MEhOd ...

Thewn_emphasiSE MELhOd..........ccoveeeircceeece e

TheWn_draw MELNOG..........ccerecesrce et s e s es s
Additional EDWIN MELNOAS..........coerieeiririiieiieesisesisee e sssesaes
The ew_insert method
Theew _find MENOU...........co e
The ew_replace MELNOU ...
Theew_replace clip method
Theew_paste Clip MEthOd.........cccoieiieceeeece e
The ew_evaluate method.......
The ew_set method.................
The ew_sense MEthO.........cccvrernere e

The concept of dOCUMENE OFf SEL........ccuciriircrr e
Allowed values of docUMENt OFfSELcceevrererrece e
The EDWIN.CHANGE property
“Read-only” edit boxes and the ew_readonly Method............cccoveervernnnenncnnsnecnens
The ewW _[€aVE MELNOM..........ccceesecc et a st s s

Controlling the layout and fOrmatting...........ccccererrcnnecceresce s sesssens

ANintroduction t0 SCRLAY ...t sessesessesssseseens
SCRLAY StruCture definitionS........c.occereeeereerereereeeseneesesesesesseeeeseeessesseessenees
Example: changing visibility of special characters.........ccovvveievvecccinnnen,
Default values of SCRLAY _STYLE in edit windows
Changing from the default 1ayout Style ...
AN INtroduction t0 SCRIMGi........oirirererere et es
SCRIMG StrUCIUre AEfiNITIONS.......cecveeereeeereerereerereieeseesee e sees e seas st ssssesenas
Example: changing the width of the text cursor
Changing the font used by an €ditor ...
Theew_sense sizeand ew_set_SiZe MEtNOUS..........ccccevevvenneecnresese s
Changing the paragraph Margins..........ccccceevnrrnensennenssssessseseseseseseenens
Notifying SCRIMG of achangein StYI€coeveevnreereneereneneeneieeseieens
Initialising the SCRIMG_WIN data StruCture............cccveeerreerenerreneereeenenenne

Direct interaction with document ObJECLS..........cocrveerierrienrrerereeeeeeeens

Setting text directly into the document object..........ccovveccevvecceeecccenne,
Dual variables at the EDWIN and SCRIMG levels
Adjusting the CUrSOr POSITION........cccceiiiiriereee et ssanses
Logical cursor movement and physical CUrSOr MOVEMENL.........ccoceeerrrrerresererensseneressneesens
Notifying SCRIMG of achange in document content
Notifying SCRIMG of alocal change in document CONteNtcccvvereeeererenreererereenenenens
When there is a change of content and a change in cursor position
The SCRLAY _DOC data StrUCIUE........cuvvreeeeerereeeeirereeisieeresesesesesasseeseenns
Thefive soft method numbersin SCRLAY _DOC........coovveveereveerennenenns
The SENSECHARS cdll-back..........ccveuenee.
Structure of SCRLAY font width tables
The TOPARST Call-DACK........ccrierrireerccee e

The ENQPAGE Call-DACK........covriereereerieeeeeneiseseeseeseesessessess s eseesesnees

The SENSEPDATA Call-DACK......coveererererereeereesersieensesessesessssesesessssesssssseens

The SENSEPLABEL Call-DACKceiieeeerrrcresneesse st ssesessssesssssseenas

Some examples Of edit-liIKEWINAOWS ..o

General comments on creating edit-liIKE WINAOWSccccvrcerenccce e
Thesi_redraw MELNOM...........coeeccr et s s s s
The si_emphasize method
The Si_Pan MELNOG ...t snas

13 Printing

The basic Model Of WDR PIINTINGccuierieeeieeeieesiseeisese s sessesessessssessssesssssssssssesssessssessees 131

Calculation of page breaks
Calculation Of [INEDIrEBKS.........c.o it

Vi

1= U T £ 133
The difference between INDENT and RIGHT, and between DOWN and HEIGHT 133
Margins and page size
The PRINTER class and storage of the ‘ Print setup’ dialog settings....
Changing font or font style While printing ...
Thetext referenced in aprint @lEMENL..........ccvvveerereenresese s sssseees
Limitations with the WDR_PRINT_KEEP flag
The need to specify font and style for @aCh liNe..........covrrinecnecnecreee e
USE2 Of WDR _PRINT _IDLE......iiesrrrrereseresenesseseseesseeesesessesesssssssssesssssssssssssssssesssssssssssssns

Using LPRINTER for standard printing PUIPOSES.........cvereemerernerrenessesssnesessessesessssssessssesesensens
The syntax of the LPR_SENSE_TEXT callback
LPRINTER and WOrd-Wrap.......cccceeueveveeeeinesensssessesssessssennnns
Working out Widths..........cccoveevvecnssccesree e
Launching the print SEtUP dialOg SUITEcccceerereeeerrerrisieress et ss s sssssesens

Examples of USE Of LPRINTER.......cccoiieeririceeeseesesisesessee s sssesesessssssesesssssssssssssssssessssssssesssssees
Framework of the example applications
The 'Print detailS’ dialOg ..o
Startup code and WS DY N_INIT COUE.......ocoururririeirerieieieireee e sessees
The LPRINTER initialisation code (first example)
The LPR_SENSE TEXT method (first eXample)........ccoevvieeneneeeneneee s essessssens
Second example: additional initialisation COdE...........ccvvrerrrereenserce e
Thethree statesin printing atwo-column displaycocevevereereereneenens
More details about printing in columns with LPRINTER

Advanced uses of LPRINTER - and beyond
The LPR_READ method of LPRINTER
LPRINTER property introduCed...........ccveerrenmrerrenerrenceneeeens
The default word-wrapping algorithm...........ccceeeeevcncnnne,

Calculating widths of text with variable font...........ccocvverececeinsce s
Where printer font width tables Come from..........coceevvcccsscee s
LPRINTER initiaisation - phase one
A brief description of the PAGES active Object Class.........cocvvervneceennecereseeeeseneenens
More about theinterface to and from PAGES...........ccoonennseeee s
A brief description of the WDR ClaSs........cccvvervencrrecerennn.

Creating and destroying WDR objects

UsiNg XPRINTER fOr Print PrEVIEW......c.cuciiueieeecee ettt s ss s sesanns
The difference between XPRINTER and LPRINTER
Extended example of print and print preview using XPRINTER
QI Lo =0 To) VR 1 = TR
COMMENG MBNBGETcvureeerereereeereresssesesessssssesesssssessesssssessessssesssssssssssssssssesessesssssssssssssessesssssess
Print detailS di@lOg.......ccvueeieeeieeerireeee et
Application initialisation
XPRINTER subClass iNitialiSAHION. ... sessees
The XPRINTER LPR_SENSE _TEXT CallDaCK.........ccevierieerieirecirecireicineeeiseteeseeseseeseeeseeens
Comments on the differences between XPRINTER and LPRINTER

WDR Printing MISCEITANYc.cuviueiririreresesie st sss e s ssssss s sssssessssssssssssssssesssssnns
WDR printing classes pictorial OVerview..........ccceeeecerunen.
ThePDR ClaSS......ccvircerierecrteieie et
Print preview without XPRINTER.........ccccccovenennenencneenn.
Saving and restoring print context fFromM file ..o

O I g1 o=

The server Side Of [INK PASEE........ccu e
Creating aLINKSV SUDCIASS INSIANCE........cvuecreirececie sttt se s sssens
Declaring link paste Server Status...........ccooveveeeereneernenennnns
Initialising the SY STEM component of w_am
The anatomy of alink paste transaction (server-side viewpoint)
EXampPle LINKSV COUB.........ooveeereererirereces e sesestsesesss e esesssssesessssesnes
General remarks aboUt [INK SEIVEFS ... snssees

Vvii

Some standard [ink paste data fOrMaLS ...
DF_LINK_TEXT and DF_LINK_PARAS contrasted
Word wrap and [iNK Paste.........c.cccenrecenenece e ssenens
DF_LINK_TABTEXT
The hierarchy Of tEXE tYPES ...t e s st

Theclient Side Of [INK PASLE........ccccrrererrscre sttt
Determining whether thereis suitable dataavailableocoeevveceeivvsccereeereeee
The anatomy of alink paste transaction (client-side viewpoint)
Simple example of USE OF LINKCL ... sesssesessesessssenns

Special help with link pasting to and from edit WindOWS...........cccveereemneenenneneneeeneeeneenns
Theew_bring_in method of EDWIN ...ttt ssssssssssesssnnns
Simple example of caling EW_BRING _IN.......cccccoovervincceriseieeeeeee e
The EWLINKSV ClaSS.....cuviireriririrereeireeineeee ettt
The three text formatS reviSited..........oorcnrneseeseeeee e

B RSN 0] 1= T
Fina comments

IS HWIM RESOUI CE FIIES ...ttt sttt st sttt s e e e st e e b e e s bn st s e sbe st srnssasesnin

The appliCation rESOUICE fIlE ..o
ReSOUrCe fil@ 10CaLION ..o
Loading an application resource.
RESOUICE SETUCLUIES........eeaeeeereeecie ettt bbbt

The SYyStEM FESOUICE FIlE ...ttt
Loading asystem resource....
Using system resources.........

HEID FESOUICES ...t ss sttt s s s se s ne e nnsesne e snsesnesnns
USING HEIP FESOUITES ...ttt ettt sttt

16 USING the SyStemM COMPONENTS........cccreerrireirerrerreessees e sess s sess s sessssessssssssnssesne

The appliCation MEBNBGETcccreerrierrierreeer s nans
PrOPEITY .o
A command line example
USADIE MELNOGS........ccerieeereiree e
Record anew filename........cocnenecneeesesese e
L OGO BTESOUICEcvueeetrieieieeteres et se ettt
Load aresourCeto abUFfEr.... ..o
Find application imagefile
A @TASK ..t
Walt for all aCtiVItY t0 CEASE. ...ttt
Replaceable MEthOdS...........cccicrcceree s
Generate resource fille NAME.........cccrereenee e
Display notifier
REPOIT QN BITON ..ot

The window server active object
Property
KEYDOAIT FITEIS ...t e
USADIE MELNOGS........ccecceceeeeeie ettt bbb

Log anew client window
0T = o (1o OO
Paragraph WOId WIADccccuerececie sttt sesss st ssssssssssssssssessensns
RUN NEIP SYSLEM.....oireceeeeccrrescce e sss e
Get choiCe liSt rESOUrCELIEXT ...ouvveereeeceeereeeer s eeeees
Run the free-form dialling dialog..........ccveveererrencrrenernecreeneeneeessieenns
Alter the loCK COUNL ..o
Set alternative menu bar
RESEL the MENU DAI.......coieriiereirecrereee et

LU= W (U= VAo [=1 oo O

Viili

RUN @N ETON Qi@ 0Qcveeeieciicireeer et

Evaluate an eXpreSSioNeereenerseerneessesesnesenns

Set or get evaluator environment variable

Set or get dial environment variablecccooeecevvene,

Run the set format dial gcoeveereiriririesceeseee s

INEITACE IO WSATEIT ... bbb

Ensure print context data exists

RUN Print SELUP i@lOgcoveeveeerireeeireereersee e es s

Run printer configuration dial0g.........ccveereernerreneesesee s

Sensetext for current printer device
Replaceable Methods..........cccceccnneccesesee e

Application-specificinitialisation.........ccccceceevevveneenen,

Foreground MESSAQE........cvveeeerereeeeninesensiessessssessesaeeens

Background MESSAQE.cuvrurureeeeteiressssiesessssssssessssesssssssessssssssssssssssesssssssssssssssssessssnns

17 HWIM ULHILY FUNCLIONS ...ttt sttt es st

GENENAl ULHTITIES. ...ouceeeeet ettt bbb
REUN TRUE ...
Return FALSE
DeStroy an ODJECLcvveeieeeiieetrreeee e
Make awindow VisibDle ..o
Send command to command manager
ENSUrE PAtN EXISES......ciecvctreicieries ettt bbbt

TEXE MBNAGEMENT ...ttt s b e se bt ne bt
Allocate Cell and 1080 FESOUICE.ccueuriiereeirereeireresste s sssseessesesas s sesssssssssssssssessssses
L0oad resourCeintO DUFFE ..ottt eae e
Load choice list item into buffer
(€TC 4TC = (TS (0] = OSSR
Generate formMatted SETING......cccvuiiicereceetreee et s et abees
Generate formatted string, variable argument count
Append ellipSISTOtEXEcvcerercereee e
Set text mode

SELEXESIYIE ..o s

Get Normal tEXt Witth FOr DUFTEN ...t ebe
Get normal text Width fOr SEHNGcceeeee s
Get bold text Width FOr DUFFEN ...ttt s e

USEE NOIFICATON ...ttt bbb bbbttt
Display an information MESSAQEcvciririrrerrereeie ettt ss st sens
Display an error information MESSA0E.........cccuerrerereeirrersisisiressssesesssssessesssssessessssssssesssssessens
Display abusy message
MBKE BDEED ... e

RUN @AIAI0G. ..ttt bbb
LaunCh @dialog.......cocceeeeeieeenieeesieereereie e
Run aconfirm dialogccoceeeeeecenenencieesesee e
Run atwo-line confirm dial0g.........cccovevvenveneeeereceeseenas
0TI o= o[- oo T

Set text iN ProMPE WINGOW........c.occeieeieieeieesieesr e enaes
Set choicein ChOICE LISt ...
Set On/Off choice liStto ON ...
Set value of NUMENC editor........ccvcveevreccrreee e
Set latitude/longitude editorccoccvvvrcrerececereseceene
Set puNCtuation €ditOroocererereeeierrereresese s
Set floating POINt EITON ...
TS0 F= 1 <o [o] OO

SEL FANGE BTNttt
Set dialog title
Sense anitem
Sense edit window..................
SENSE A CNOTCE ISt ...t bbbt
SENSE A NUMENTC EUITON......eeeeeeiriet ettt bbbt
Sense arange editor
Sense afloating point editor.
Sense alatitude/|ONGIitUdE EITONc.occvrierriererreei e
Sense a punctuation editor
Sense adate editor..................

Dim/undim an item..................

Lock/unlock an item................

Change fOCUS......ccceerererec sttt

Set floating point editor from tWipS VaIUE........ccveeeerverccerseee st
Sense twips value from floating POINt @AITOTcvireeireeeineeeneee e

18 APPIICALION DESIGN ...ttt bbbt

BASIC S GN ...ttt R
The user interface....................
Theengine......ccccoeveeeveererrenee.

The Record application..................
Specification.........oeeevereceenne
Top-level view

Y1 o TSR
RECOITING ..vnvenretee e
Running for thefirst time

APPENAIX A - CALEUONY FIlES ...ttt se s ss st ne s snsessesesnsesssnnas

(0= 1 =00V 1= oo g = o] T
L@ =SS o[1T 0Tl o] o OO T

SUD-CALEJOTY FIIES ...ttt bbbttt
Using sub-category files

Category tranSlalioN ... e nees
The .ext externa referenCefile ...
The .c C language category SOUrCe fil€......onrinnnrcnrerceesesseserenens
The .g C language includefile
The .asm assembly language category sourcefile
The .ing assembly language include file........oocenenenncnncnerecneene
The .liscategory liStiNg Fil€.......ocrere e
The .c skeleton method function SOUrCE fil@........cv e

Appendix B - Method FUNCLION SOUFCE FIIES ...t B-1
Method function parameters
Calling conventions and fUNCLION OFAENcccceeeeverccerree e B-1

Class descriptor
L@ o= ot ox == 1 o o TR

CALEYONESeureereee et
Category handles and category numbers
DYNamiC liNKagE........ccccucerrereererece et sesseenas
Referencing by category handle ...
M ESSAGE PASSINQ..eevrvrrereerrerisssesresessessessssetsssessessssssssesesssssesessssssssessssssssessssssssesasssssesssssssessens
Calling conventions for method functions
MELNOO PAIAMELEL'Secveerecereeereeee e s s nas s e ssaessenns

Xi

CHAPTER 1

INTRODUCTION

This manual provides practical information onthe use of Psion's Object Oriented Programming (OOP)
system for the Series 3 and Series 3amachines. It illustrates how to use Object Oriented techniquesto write
applications, using the HWIM (Hand-held WIMP) dynamic class library, which is built into the ROM of
Series 3 and Series 3amachines. Such applications can be written to at least the level of functionality
obtainable by using standard C programming and the Hwif library, as described in the Programming in Hwif
manual. In many respects the use of Object Oriented techniques allows applications to be writtento a
standard that is well above what can be achieved with the Hwif library.

The content of this manual assumes no particular prior knowledge of Object Oriented programming
techniques. However, it would be useful to have read atextbook on the fundamental principles of OOP and
to be familiar with basic concepts and the terminology in common use. There are many topics that are
covered briefly in an early chapter and then described more fully at alater stage. The manual should
therefore be read in its entirety for afull understanding, although many of the details may be skipped on first
reading.

This manual assumes that the reader is familiar with the basics of producing applications for the Series 3
range of machines, as described in the Series 3/3a Programming Guide. It aso assumes some familiarity
with the use of windows and pull-down menusin the application's user interface as described, for example,
in the Programming in Hwif manual. Thisformof user interface will also be familiar to those who have
written OPL applications for the Series 3 or Series 3a.

Applications written using OOP and the HWIM library have anumber of advantages over those writtenin
OPL and those written in C, using the Hwif library. Some of the more significant advantages are:

By default an HWIM application maintains its screen's appearance by using a dynamic redrawing
technique. OPL and Hwif allow only the use of a backed-up bitmap, which consumes more memory
and slows down drawing to the screen.

A number of classes such as dialog boxes and dialog box controls already exist, with default
behaviour. As such, they can be used directly, or subclassed as required for more specialised
behaviour. Such classes permit quite sophisticated applications to be built fairly quickly.

The contents of dialog boxes and menus can be changed dynamically, allowing amore
sophisticated dialog with the user. Also, consistency and dependency checks can be performed
before allowing the user to exit from adialog. Both of these are difficult, if not impossible, under
Hwif.

Program activity may continue while amenu or adialog is being displayed.

All resources are placed in resource files. This encourages the creation of language independent
applications.

OOP permits software to be re-used; standard classes can be developed for one application and
can be re-used in another, thus avoiding the need to "re-invent" software.

The object paradigm is well suited to the design process, particularly for interactive event-driven
programs with graphical interfaces. Good design permits quicker modification and alows
maintai nance to be done more easily, more quickly, more cheaply and with greater reliability.

OBJECT ORIENTED PROGRAMMING GUIDE

Basic concepts

The material in this section provides a general overview of many of the basic mechanisms of Psion's OOP
system. Further details on many of these topics will be found in Appendix C.

An object may be regarded as a combination of anumber of items of data (referred to in thismanual asthe
object's property) and a number of functions (the object'smethods) that manipulate that data. An object
usually represents some particular aspect of the problem under consideration. In general, the name of an
object is noun-like and the names of its methods are verb-like. As an example, one of the most commonly
used objectsis awindow, that is, an object that represents a rectangular area on a computer screen in which
datamay be displayed. In this case, the property includes the dimensions of the rectangle and one of the
object's methods would be resize, to alter the window's dimensions.

An object is characterised by itsclass definition, specifying the property and the methods that are
supported. Each object is said to be aninstance of its class.

Classes

A class specifies the data (property) and behaviour (methods) of a particular type of object and is defined
by an entry in acategory file. The category file entry lists the property items and the method functions, in a
way that is described later in this chapter and, in more detail, in Appendix A.

In general, aclassis derived from another, more general class, known asitssuperclass. In such acase, one
or more of the class methods (and items of property) may be supplied by the superclass. The classis said to
be a subclass of its superclass. The subclassing process may be repeated to construct arbitrarily long
subclass chains. In practice, however, such chains tend to be fairly short. On grounds of maintainability and
comprehensibility it isinadvisable to construct long chains.

Although each subclassinherits methods and property from its superclass, a subclass can add its own
methods and replace (that is, redefine) inherited methods to provide more specialised behaviour.

Object creation

Aninstance of aclassiscreated by callingp_new, f _new, f _newl i bh,p_new i bh,f_newsend or

f_new i bhsend. These functions return a handle for the instance, and this handle must always be used to
identify aparticular instance. The handleis, in fact, a pointer to an allocated heap cell that contains the
property (if any) of that class. This property includes any property inherited from superclasses.

All the functions (p_new etc) that create an object initialise the property with zeros.

Property may only be accessed viathe object's handle. Within the method function code, thishandleis
conventionally given the namesel f . Note that, in contrast to some other object oriented systems such as
C++, any code to which an object's handle is available has access to all the property of that object, including
the property of all its superclasses. For those who are familiar with C++, the idea of private and protected
data and functions does not exist. In terms of access to property and methods, Psion's Object Oriented
Programming systemis similar to Object Pascal.

Although not enforced by the programming system, the intention is that, by default, property should be
considered as private to aparticular class unlessthere are valid reasons for it to be externally accessed.
Property of the classes supplied in the object libraries should always be considered to be private unlessit is
explicitly stated otherwise.

Component objects

An object's property may contain the handles of other objects, usually for the purpose of sending messages
to them. Such a handle may have been passed to the object as the parameter to one of its methods and may
be stored purely for convenience. A roughly equivalent result could have been obtained by storing the
handle in aglobal variable.

A moresignificant case, however, is where the object ‘owns' asubsidiary object that is an integral part of the
owning object. Such asubsidiary object will normally have been created by the owning object, whichis
usually the only object to have any knowledge of its existence, and must be destroyed when the owning
object isitself destroyed. In such a case the subsidiary object is said to be a component of the owning
object. A classdefinitionin acategory file can mark one or more items of property as being the handles of
component objects.

1 INTRODUCTION

Object destruction
An object isnormally destroyed by sending it a DESTROY message (sending a message is described | ater).

A root class (i.e. aclass that has no superclass) normally contains a single method. Thisimplements the
default destroy method and isinherited by all other objects.

The default destroy method is designed to destroy the object and all its components (and the components
of components and so on). In addition to avoiding the need to duplicate component-destroying code, this
feature is one of the cornerstones of efficient recovery from error conditions. The standard root class
(imaginatively named ROOT) is supplied by the OLIB class library and the default destroy method function,
root _dest r oy, isprovided by the PLIB library.

Some object classes may create resources that are not objects (e.g. an I/O channel, which needsto be
closed) or may wish to destroy objectsin a specific order. Such classes generally replace the destroy
method to clean up the resources introduced by the class. In addition to its class-specific action, the method
must "supersend" the destroy message to the superclassin order to continue the destruction process.
Every object is expected to executer oot _dest r oy at some stage in its destroy method.

Objectsin existence at the termination of an application do not need to be explicitly destroyed. The EPOC
operating system ensures that all resources used by a process are rel eased when the process terminates.

Categories

A category isagroup of one or more classes packaged into aload module which, when loaded, occupies a
single code segment. Category code segments are shared - thereis only one copy of a particular category in
memory, however many processes are executing it.

There are two main groups of categories:

Image categories are used to implement programs. The name of a code segment that contains an
image category has the extension .$sc.

Dynamic library categories (DY Ls) contain classes that are referenced from image categories and
other DYLs. The name of a code segment containing aDY L has the extension .dyl.

A straightforward small- to mediumsized application, such as those described in this manual, typically
consists of asingle image category that references the built-in ROM DYLs.

Programmers may, however, develop their own DY Lsfor one of the following reasons:

A larger application can choose to be organised into multiple categories to limit its working set by
selectively loading transient subsystem categories into memory (analogous to overlaysin single-
tasking operating systems).

A large application may use DY Lssimply to overcome the 64K code segment limit.

An application may wish to develop an open-ended set of "polymorphic” DY Lsto implement, for
example, aset of different printer drivers.

To develop ageneral-purpose DY L which supplements the system object libraries.

To provide the commo n functionality for a product that consists of a suite of application programs.
Dynamic libraries have the following advantages over normal (static) libraries:

only one copy of the code is present in memory however many processes are using it

the DY L code does not detract from the 64K segment limit of the application that isusing it

provided you don't change the interfaceto the DYL (or at least make it upward compatible), you
don't need to relink the applications that use the DY L when you build anew DY L

Category handles and category numbers

A referenceto acategory may be made either by a category handle or by category number. The reference
may beto:

the local category, that is, to the category containing the code that makes the reference

OBJECT ORIENTED PROGRAMMING GUIDE

an external category, that is, any category other than the local category.

A category handle uniquely identifies a category code segment, but is only known at run time, after the
categories have been dynamically linked (for example, by means of acall top_I i nkl i b).

A category code segment may also be identified from within a category by a category number, which is
known at compile time. A category number is not unique, in that two categorieswill, in general, use different
category numbers to refer to the same external category.

Because of thisfact, a category number should not be passed as a parameter to an external method (for
example, to create acomponent of variable class). When there is arequirement to pass a category asa
parameter, the category handle rather than the category number should be used. After dynamic linking, the
category handle may be obtained from the category number by callingp_get I i bh.

A category number is mainly used to create an instance of an object classusingp_new, f _newor
f _newsend. These functions automatically convert the passed category number to the corresponding
category handle.

The most common use of a category handleisto create an instance of an external classusingp_newl i bh,
f_newl i bhorf_new ibhsend.

Message passing

In OOP terminology, sending a message to an object means calling a method function of the class or
superclass of which that object is an instance, the method function being identified by itsmethod number.

The most common way of sending amessageisto usep_send or, more efficiently, one of thep_sendn
variants. All of these functions must be supplied with the handle of the object instance (as returned by, say,
p_newor p_new i bh) and the method number astheir first two parameters. Up to three additional
parameters may be supplied.

The p_send function locates the appropriate method function by scanning up the superclass chain, starting
with the class of which the object is an instance, selecting the first matching method function.

If no suitable method is located in the superclass chain, the sending function panics with panic number 48.
The send will al'so panic (with panic number 55) if any classthat is scanned does not have avalid structure.
This catches, amongst other things, the sending of a message to an object that has already been destroyed.

If successfully located, the method function is passed the object handle and the optional parameters (the
method number passed top_send is suppressed).

Although p_send isthe most commonly used message-sending function, the following functions may also
be used:

p_supersend thisis used within amethod function to send a message of the same method
number to the same object, but to be handled by a superclass method. It
workslikep_send except that the search for amethod starts at the immediate
superclass of the class associated with the method containing the call to
p_supersend. It istypically used within a subclass method that adds further
processing (before, after or around the call top_super send) to the method

being replaced.

p_entersend thisworkslikeap_send that has been called with ap_ent er - but more
efficiently

p_exact send this can send a message to a method of a specific classin an object's class

tree. The search for the method starts at the specified class. It is frequently
used within amethod function to send a message to the same object, but to be
handled by a superclass method once removed - in effect a super-supersend.

A method function is normally declared with the METHOD_CALL calling convention. Other calling
conventions may be needed in some circumstances, as described in the Calling conventions for method
functionssection of Appendix C.

1 INTRODUCTION

Notation and conventions

Category numbers

Thelocal and external category numbers are represented in code by means of generated symbolic constants.
The symbolic name for a category number is generated, in upper case, from the names of the local and
externally referenced categories, separated by an underscore, and a CAT_ prefix.

The symbolic name indicates in an explicit manner the category from which the reference is being made and
the category that is being accessed. For example, fromaMY CAT category the (external) category number of
the OLIB category is represented by CAT_MYCAT_OLI B. Thelocal category is, in this case, represented by
CAT_MYCAT_MYCAT.

Class names

A referenceto aclass name in the text of this manual is given in upper case. The HWIM conmmand manager
class, for example, whose class definition starts with the line:

CLASS comman r oot
isreferred to in the text as COMVAN.

Class numbers

Each class within a category has an associated class number, used by code that creates an instance of the
class (such asacall top_new). A class number is represented by a generated symbolic constant. The
symbolic constant name is generated, in upper case, by prefixing the class name with C_. Thus the COMvAN
class number is represented by C_COMVAN.

Method names

A method name, as declared in a class definition, by convention is normally given atwo or threeletter prefix
that indicates the classin which it isdeclared. The prefix is separated by an underscore from the remainder
of the name. For example, com i ni t isamethod of the COMMAN class. The prefix will, in general, be different
from the prefix used for methods of a superclass.

The method name is used when building the symbolic constant for the associated method number.

Method function names

A method function must be given a name constructed from the class name, followed by an underscore and
the method name. For example, the method function associated with thecom i ni t method of the coMvAN
class must have the namecomman_com init.

Messages and message numbers (method numbers)

Each method isidentified by a method number, represented by a generated symbolic constant. The symbol
is generated, in upper case, by prefixing O_ to the method name. For example, thecom i ni t method hasa
method number represented by the symbol O CoMm | NI T.

The messageitself isreferred to in the text simply by an uppercased method name. For example, the
com_ i nit methodis invoked by the sending of aCcom | NI T message.

Object handles

An object handleidentifies a particular object (instance of aparticular class). Itis, in fact, a pointer to the
memory cell that results from a call to one of the object-creating functions (p_new, for example). The cell
contains a C struct, whose typedef appears in the appropriate .g file generated from the category file by
CTRAN. Thetype name of the struct is generated by prefixing PR_ to the class name. Thus the handle of an
object of classw Nisapointer to aPR_W N struct. Within the method functions of a class the handle of an
instance of that classis conventionally given the namesel f .

The memory cell pointed to by the object handle contains the object's property, including the property
defined for all its superclasses. Take, for example, the HW MVAN class. This subclasses APPMAN which, in
turn, subclasses ROOT. The handle of an HW MVAN object pointsto aPR_HW MVAN struct that is composed
asfollows:

sel f pointsto: | property of ROOT accessed by: sel f - >r oot

OBJECT ORIENTED PROGRAMMING GUIDE

property of APPMAN | accessed by: sel f -

>appnman
property of accessed by: sel f -
HW MVAN >hwi nmman

If aclass supplies no additional property then the corresponding element of the struct does not exist.

The object handle may optionally be declared as a pointer to any superclass. Thus the pointer in the above
example may be declared as a pointer to either PR_ROOT (which gives access to only the ROOT component)
or PR_APPMAN (with access to ROOT and APPMAN property). It may also declared asaval D * inwhich case,
obviously, there is no accessto any of the object's property.

Method function prototypes

The description of each method in the documentation contains a function prototype that specifies the
nature of any return value and the parameters with which the method is called. By convention, the listed
parameters always exclude the object handle that is passed as the first parameter to every method function.
It also does not show the method function number, which is passed to the message-sending functions such
asp_send, but isremoved by the message-sending mechanism and is never passed to a method function.

For example, awn_enphasi se method for the classw N, described in the documentation by the prototype:
VOI D wn_enphasi se(Ul NT fl ag)

would be invoked by, for example:

p_send3(hand, O WN_EMPHASI SE, TRUE)

where hand isthe handle of an object of the W N class and O W N_EMPHASI SE is the method number.
This corresponds to amethod function declared in C source code as:

METHOD VOI D wi n_wn_enphasi se(PR_WN *sel f, U NT fl ag)
{

Class diagrams

The class diagrams in this manual broadly follow the notation as used in Object Oriented Design with
Applications, by Grady Booch (The Benjamin/Cummings Publishing Company Inc, 1991). A classis
represented as shown below, where the class name is written inside the symbol. An underlined name
represents an imported class, that is, a class whose class definitionisin an external category.

Rel ationships between classes may be that one class subclasses another, or that a class uses another. The
superclass/subclass relationship is represented by an arrow joining the two classes, asillustrated in the
following diagram.

- - .- - - -
PR PR

“'superclass ; < subclass

A 'using' relationship isillustrated in the following diagram, where class A uses class B. The using
relationship may mean that class B is a component of class A, or simply that class A sends messages to
classB.

1 INTRODUCTION

In some cases, where the two classes may be considered co-equals, the using relationship may be shown
without the circle that indicates the direction of the relationship.

The basic component objects

The standard classes that are present in anormal HWIM application are asillustrated in the following class
diagram.

- - - -
ST T R A E N A E A
- : - . - . : -
L r

- . . - .
S resources K " application . window ; S menubar)
.
N — manager = zEIver

tachive <

L | _——
- . -

S client T S didlog bow . command
r . r r
v window o : r. manager ¢
- L - L - .
N 1 N 1 1
. .- .-
;w’, "tiapt_sj# ”#,’

There are five main static objects (by static we mean an object that exists for the lifetime of the application)
provided by HWIM; the application manager, the application's resources, the window server object, the
command manager and the client window. A sixth static component that is usually present in non-trivial
applicationsisthe engine. The menu bar and, optionally, one or more dialog boxes are transient objects,
being created when they are required and destroyed on completion of their function.

The application manager and the window server object together form the central core of the application.
From the application programmer's point of view they may be considered as a single entity that provides the
application's main event-handling loop and arange of system services. The separation of this functionality
between two objects represents a division of labour; the window server object deals with the user interface
and the application manager handles those aspects that are independent of the user interface. (Although it
is beyond the scope of thismanual, it is worth pointing out that an application with no user interface can be
constructed around the application manager aone.)

The application manager

The application manager provides the framework for an application, including its main event-scheduling
loop. It performs all standard start-up and initialisation. As part of thisinitialisation it creates awindow
server active object (and hence acommand manager - see later) and opens the system resource file and the
application's own resource file. In addition, the application manager supplies methods for manipulating other
standard system components and adding further optional components.

OBJECT ORIENTED PROGRAMMING GUIDE

The HWIM library supplies the HW MVIAN application manager class, which isasubclass of the OLI1B
APPMAN class (see the OLIB Reference manual). An instance of this classis normally created and initialised
from the application'smai n() . It israrely subclassed by an application, the main exception being that of a
multi-lingual application, which will need to modify the mechanism that |oads the application resource file.

An application may subclassHW MVAN by replacing existing methods. In the interests of future
compatibility, application-specific subclasses should not add methods or property. An application that adds
methods or property to the application manager is not guaranteed to run on future versions of machinesin
the Series 3 range.

The window server object

The window server is an active object that acts as the source of those events (keypresses, redraws etc) that
are sent to the application by the window server process. On receipt of such an event the window server
object directsit to the appropriate object, normally either awindow (the client window or adialog box) or the
objectsinvolved in the command execution mechanism.

An instance of awindow server object isautomatically created during the initialisation of the application
manager. As part of its standard initialisation the window server object creates and initialises acommand
manager.

The HWIM library supplies the WSERV window server object class which is a subclass of the OLIB ACTI VE
class. HWIM applications will almost invariably subclassWsERV , replacing itsws_dyn_i ni t method, to
provide application-specific initialisation. Part of thisinitialisation will be the creation and initialisation of a
client window.

An application is free to subclassWsERV by replacing existing methods. In the interests of future
compatibility, application-specific subclasses should not add methods or property. An application that adds
methods or property to the window server object classis not guaranteed to run on future versions of
machinesin the Series 3 range.

Resources

All standard HWIM applications are assumed to have access to two resource files- the system resource file
(inthe ROM) and an application resource file. These are opened automatically during initialisation of the
application manager, which also provides methods to access individual resources. Thereisrarely any need
for an application programmer to subclass the resource file class.

The application resource file must contain the resources that provide the accel erator keypresses and the text
of the application's menu bar and pull-down menus. In addition to these essential items, it may also contain
resources for any application dialogs and other application-specific text.

The command manager

The command manager supplies the functionality to execute the command options that may be selected from
the application's pull-down menus. A command manager instance is automatically created during the
initialisation of the window server active object.

The HWIM library supplies the cCoMvAN command manager class, which provides the basic skeleton for a
command manager. Although avery simple application could make direct use of an instance of the COMVAN
class, HWIM applications will normally subclass COMVAN, replacing one or more of the supplied methods
and adding application-specific methods and property.

Client window

All standard HWIM applications are assumed to have a main window, designated as the client window to
provide the principal view of the application's data. Thiswindow will receive messages from the window
server active object in response to window server events (such as keypresses). The client window must be
explicitly created and initialised by application-specific code, normally from within the window server
object'sws_dyn_i ni t method.

The functionality of the client window varies widely from application to application and much of an
application's code will be associated, directly or indirectly, with the client window. For this reason, the
HWIM library provides very general window classes that will normally be extensively subclassed in most
applications.

The engine

The engineis an application-specific class that is normally created at the same time as the client window. A
typical engine will subclassROOT. Engines are further discussed in the Application Design chapter.

1-8

1 INTRODUCTION

Menu bar

An instance of the application's menu bar classis automatically created by the window server object
whenever the menu bar must be displayed (for example, when the Menu key is pressed) and is destroyed
when the menu bar disappears.

The menu bar class contai ns the mechanism to convert a menu selection into the appropriate command
manager message and is unlikely to be subclassed in any application.

Dialogs

A dialogisusually created by application-specific code in acommand manager method that iscalled in
response to the selection of acommand menu option. Such a dialog may simply use the supplied DLGBOX
class or may be an application-specific subclass. The use of dialogsis discussed in some detail in the
Dialogsand Dialog Controls chapters.

The required files

To create an object oriented application the writer's task consists of constructing a number of fileswhich
will be input to the build process. A number of tasks must be performed which can be broadly defined as
follows:

building the required classes by defining their property and methods; further, deciding whether any of
the required classes can be subclassed from existing classes, thereby re-using existing software

providing the functionality for a number of method functionsthat will be called by system code

writing ashort mai n() that creates and initialises an application manager, supplying it with one or more
of aset of options

building the resource file(s) and optionally, the Icon file, the Add files list and the Shell datafile.

The following sections describe the structure and content of the files required to create an object oriented
application in more detail and broadly correspond to the tasks outlined above.

Category file

The category file defines the application-specific classes - methods, property and associated defined
constants and structs. As part of the process of building an application, the category fileistranslated with
the aid of the CTRAN tool. The output from the translation processis a C sourcefile (which isalso
compiled, ready for linking into the application) one or more generated include files, each with a.g extension
and an externa filewith a.ext extension. Other files may optionally be generated.

The external file contains information about this category which will be needed when translating any other
category which makes an external reference to this one.

The content of a category fileis best explained in conjunction with the following short example. A more
complete explanation is contained in Appendix A. Here we shall concentrate on the basic content of aclass
definition.

Thefile header contains the category name, external category references (the order of which determines the
external category number sequence) and a number of included header files:

A denonstration cat file
| MAGE deno

I External reference to OLIB library
EXTERNAL olib

I NCLUDE p_std. h
| NCLUDE p_object.h
I NCLUDE varray.g required, in this case, for know edge of VAFLAT

Thisisfollowed by one or more class definitions, each of which follows the general model illustrated below:

OBJECT ORIENTED PROGRAMMING GUIDE

CLASS dummy r oot the class name and its superclass
Dummy cl ass definition,
as an illustration only
Met hods follow. ..
REPLACE destr oy free buffer and supersend
ADD dm i nit creat e VAFLAT conponent and allocate buffer
DEFER dm _sub defined by a subclass...
CONSTANTS auxiliary symbolic constants

{
I for the buffer

DUMW_BUF_SI ZE 128 al | ocated buffer size
! for the VAFLAT conponent

DUMMY_GRAN 16
TYPES contains auxiliary structs
{
typedef struct /* comments here are exceptional */
{
TEXT *buf; pointer to allocated buffer
UWORD | en;
} DUMWY_BUF;
}
PROPERTY 1

{
PR_VAFLAT *array; the conponent VAFLAT instance
DUMMY_BUF buffer;

}
}

The cLASS keyword introduces a class definition. It is followed by the name of the class and then the name
of the parent superclass. The above example defines the classbumvy which is a direct subclass of the ROOT
class. The layout of aclass definition is significant; apart from leading whitespace, whichisignored, it must
follow the pattern that isillustrated above - and in the class definitions given el sewhere.

The class definition of each subclass listsits additional methods and any additional property. It may also, as
in the above example, include the definitions of auxiliary structures and constants used by that class. There
are many further examples of class definitions throughout this and other manuals (in the OLIB Reference
manual, for example).

The class definition may include any number of method declarations,! introduced by the ADD, REPLACE or
DEFER keywords. Each of theseisfollowed by a method name. The method declarations may be followed by
one of each of the CONSTANTS, TYPES and PROPERTY keywords.

The method declaration keywords have the following meanings:

ADD declare amethod in addition to the methods provided by the superclass. The name
must be unique in relation to all other methodsin this category, or any externally
referenced categories. Although not compulsory, the name conventionally starts with
ashort prefix related to the name of the classin which it isintroduced.

REPLACE declare amethod whose functionality isto replace that of a method supplied by a
superclass. The name must be that of an existing method in the superclass inheritance
tree.

DEFER declare an additional method as for ADD, except that the functionality of the method is

not defined by the current class and is expected to be provided by a subclass (using
REPLACE). A class containing one or more DEFERred methods is known as an
abstract class and, in general, no instances of such aclasswill ever be created.2

It is recommended that each method name be followed by a concise descriptive comment.

1Subject to amaximum of 255 methods, including those inherited from superclasses.

2Thereisno formal requirement for all DEFERred methods to be REPLACEd and it is acceptable to create an
instance of such aclass provided that it is known that no DEFERred method will ever be called. Window
subclasses, for example, do not need to REPLACE dl DEFERred methods of the HWIM w N superclass.

1-10

1 INTRODUCTION

The CONSTANTS keyword introduces alist of symbolic constant definitions, each consisting of the symbol
name (conventionally in upper case) followed by the numeric value. The value may be an expression
involving symbolic constants defined earlier, either in the category fileitself, or in any included file. The
expression itself must not contain any whitespace.

The TYPES keyword introduces alist of C languaget ypedef struct definitions, whose layout should follow
that given in the example category file. (Many further examples may be found in the class definitions shown
for each classin, say, the OLIB Reference manual.)

The PROPERTY keyword introduces alist of data element declarations to be included in the struct that
definesthe class property. The form of this struct is described in the Category Translation chapter of the
Object Oriented Programming Reference manual.

Thiskeyword may optionally be followed by aliteral number (expressions may not be used) that specifies
how many component items listed in the property are to be sent an automatic DESTROY message when an
instance of the classis destroyed.

This assumes that, for avalue nconp, thefirst nconp itemsin the additional property for the class are either
NULL or handles (pointers to instances) of component objects (as defined earlier in this chapter).

In the above example, DUMVY's component VAFLAT instance will be automatically destroyed when bumvy
receives a DESTROY message.

Source files

Method functions

A method function must be supplied for each added or replaced method in each application-specific class.
The method functions may be supported by auxiliary (or utility) functions- that is, normal C functions called
from within the method functions. These functions may be in a separate file or in the same fil e as the method
functions.

The method functions themselves may be organised into C filesin any suitable way. Normally, al the
method functions for a particular classwill be grouped into onefile, but thisis not arequirement. It may be
convenient to group together all the methods of arelated set of objects, and a simple application may have
al its method functionsin asingle sourcefile.

Where afile contains amixture of method functions and auxiliary functions, it is conventional to put all the
auxiliary functions at the top of the file, followed by the method functions. One advantage of this schemeis
that it minimises the number of compiler directives needed to establish the correct calling conventions for
the different function types. This may be extended to include other function calling conventions so that, in
general, asource file will have the following form:

<i ncl udes>

<'normal' functions>

#pragm ENTER_CALL

<functions called via p_enter>

#pragma CDECL

<met hod functions that are callable via p_enter>
#pragma METHOD_CALL

<met hod functions>

Failing to declare the correct calling convention for afunction will cause unpredictable run-time errors when
the function is called.

Main
Themai n() of an object oriented application that uses the HWIM library takes the following form:

OBJECT ORIENTED PROGRAMMING GUIDE

#i ncl ude <hw mman. g>

GLDEF_C VO D nai n(VOl D)

{

I N_HW MVAN app;
I N WSERV ws;
VOl D *handl e;

p_linklib(0);

app. fl ags=FLG_APPMAN_RSCFI LE| FLG_APPMAN_SRSCFI LE| FLG_APPMAN_CLEAN;
app. wserv_cat =p_get | i bh(CAT_MYAPP_MYAPP) ;

app. wserv_cl ass=C_MYAPPWS;

ws. com cat =p_get | i bh(CAT_MYAPP_HW M ;

ws. com cl ass=C_COMMAN;

handl e=p_new(CAT_MYAPP_HW M C_HW MMAN) ;

p_send4(handl e, O AM I NI T, &pp, &ws) ;

}

Thecall top_I i nkl i b dynamically links the application category with the DY Ls (HWIM, OLIB etc.) inthe
ROM. If the application uses one or more application-specific categories it may be necessary, depending on
how they are used, to load and link them at this point. A failureto link the appropriate categories can cause
arange of object-related run-time errors.

Thef | ags field of thel N_HW MVAN struct specifies arange of options that are used during initialisation of
the (HW MVIAN) application manager. The possible range of flagsis described in the OLIB Reference manual.
Thethree flags specified in the above code, specifying that the application uses the system resource file, an
application resource file and a CLEANUP object, are mandatory for all HWIM applications.

By default an application will be built to run on the Series 3 and will runin compatibility mode onthe Series
3a. OR'ing FLG_APPMAN_FULLSCREENinto the app. f | ags field specifies that the application should not run
in compatibility mode on the Series 3a.

Thewserv_cat andwserv_cl ass fieldsof thel N_HW MVAN struct must be set to the category and class
numbers of the application's window server object. Asindicated in the example, all applications will use an
application-specific subclass of the WSERV class that is supplied by HWIM.

Similarly, thecom cat andcom cl ass fields of thel N_WSERV struct must be set to the category and class
numbers of the application's command manager that is created during the initialisation of the window server
object. The example specifies the use of comvaN itself: normally an application will use an application-
specific subclass of COMVAN.

Thefinal action isto create and initialise the application's command manager (typically, asin this case, the
HW MVAN class supplied by the HWIM category). The application manager locates and opens the resource
files, creates and initialises both the window server object and command manager and starts the
application's main event-processing loop. All further interaction with application-specific codeisviacalls
from system code to a range of method functions. Thefirst such call isto the window server object's
ws_dyn_i ni t method, which is assumed to perform all necessary application-specific initialisation.

Note that the application will never return from the sending of the AM_I NI T message to the application
manager.

Resource externals file

Theresource externalsfile, with a.re extension, is used to extract from the application's header files those
defined constants that are needed during the compilation of the application resourcefile. It is used to
generate a.rg file that is#i ncl uded in the application resource file, thus avoiding the need to#i ncl ude a
large number of separate header files.

Inlarger applications, this process can reduce the time taken to perform a resource compilation and reduces
the risk of out of memory situations occurring by effectively passing only those definitions required for
successful resource compilation. It isalso useful if the resource fileisto be translated. The (usually small)
rg file can be supplied to the translator together with the resource file, rather than having to supply a
(usually large) number of other header files. The translator can then easily make atest compilation of the
translated resource file, with consequent savingsin time and effort.

1 INTRODUCTION

Application Resource file

Application resource files contain the text strings used in the application's command menus, dialogs, text
messages and so on. In object oriented programming, such strings must be kept separate from code.

In general, resourcefiles are useful for the following main reasons:
having datain aresource file rather than in the code reduces the size of the code segment
resource files make it easier to write language independent applications

In essence, any resource item within aresource file can be identified by aunique number. This number is
usually assigned to a symbolic constant that is published in a header file generated by the resource
compiler. Including this header file in a source file allows code to reference the resources.

The structure of resourcefilesis described in much greater detail in the Resource Files chapter in the
Additional System Information document.

Further information can also be found in the HWIM Resour ce Files chapter in this manual.

System resource file

The system resourefileisbuilt into the ROM and is functionally similar to application resourcefiles.
However it contains common resources, including many system dialogs, the text for standard information,
error messages and basic help.

The general structure of the system resource fileis similar to that of application resourcefilesandis
described in the Resource Files chapter in the Additional System Information.

Again, further information can be found in the HWIM Resour ce Files chapter in this manual.

Miscellaneous files

Icon

An application can be represented by an Icon. Although not mandatory, the system screen will refuse to
install the application unlessit contains one. In this situation, the application can still be run from Runimg
but an empty icon boundary will be displayed.

Anlconisnormally placed in a.pic file and can be produced in avariety of ways:

using the Iconed demonstration application that can be built using the HWIF part of the SDK, or
the Series 3a |l coneda application that isinstalled into the \sibosdk\s3atool directory.

using the window server tool wspcx.exe on the .pcx output of a PC program such asWindows
PaintBrush

Theformat of .pic filesis given in the Bitmapssection in the Window Server Reference manual.
For further information on Icons, see the Series 3/3a Programming Guide.

Add files list

Anaddfileslist isatext file with extension .afl which contains from one to four filenames. In essence, as
part of the process of building an application, the filesreferred to in thislist are combined with the
application’'s .img file to produce alarger .img file.

Thelist can refer to a.pic filefor anlcon, a.rscfile for an application's resource file and so on.

For further information on add files, see the chapter Building an Application in the General Programming
manual.

Shell data file

The Shell datafileisafilewhich can beincluded in the add fileslist (and therefore embedded into the
application). It specifiesinformation required by the System Screen application (also known as the Shell).

For example, it tellsthe Shell the expected extensions of any files to be edited and the default directory of
thesefiles. Thisinformation is specified at compile time.

OBJECT ORIENTED PROGRAMMING GUIDE

For further information on the Shell datafile, see the Communicating with the System Screen chapter in the
Series3 Programming Guide.

CHAPTER 2

BUILDING AN OBJECT ORIENTED APPLICATION

The process of building an application that contains object oriented code is very similar to that used for
building non-object oriented multi-file programs. The basic mechanisms of compiling and linking the various
modules are as described in the Building an Application chapter of the General Programming Manual.

Perhaps the most obvious difference isthat, in addition to the file(s) containing source code, an object
oriented program also requires a category file, described in the Category Files chapter of the Object
Oriented Programming Reference manual.

The application must also supply a method function for each additional or replacement method declared in
the category file. For clarity, it isgenerally preferable to use a separate file for the source code of the method
functions of each subclass. This has the added advantage that it al so tends to reduce the amount of datain
theincluded files, particularly if the category file is separated into anumber of sub-category files (see
Appendix A - Category Files). It is, however, perfectly acceptable to combine the method functions of two
or more subclassesin asinglefile, particularly if they are closely related, or if they share some common
functionality.

The process of generating a.img fileisillustrated in the following diagram.

Classes .OBJ
.CAT (code)

classinfo
.C (code)

The category fileistranslated, producing an object file and one or more .g files. The .g files areincluded, as
required, into the .c files containing the method functions. These files are compiled, to produce object files,
in the same way as for any other .cfile. The .img fileisformed by linking these object files and the object file
that results from category translation.

The processing of the category file is shown in more detail in the following diagram. The CTRAN category
translator tool actually generates a .c file that contains, in source form, the data for the class descriptors of
each classin the category. Thisfile has to be compiled to produce the class descriptorsin object form. Since
class descriptors have to be in the code space of a process, the object file has to be further processed. This
processing is performed by the OBJCONYV tool, which modifies all datain the object file so that it will be
loaded into the process code space when the application runs.

OOP REFERENCE

Classes C © .0OBJ
CAT ' Compiler (data)
classinfo .0OBJ
G (code) i OBJCONV.

The entire process, from category file to converted object file, is performed by the supplied ct.bat batch file.
Y ou only need to be aware of the underlying mechanisms because of the .c file that is generated in this
process. Thisfile hasthe same name as the .cat file so that, for example, the category file mycat.cat will
generate the file mycat.c. Y ou should therefore avoid creating a separate C source file (amethod sourcefile,
for example) with the same name as the application's category file, otherwise it will be overwritten during the
category translation process.

An object oriented application (.app file) is constructed from a.img file by adding anicon, a shell datafile
and aresourcefile, in the sasme way asis described in the Series 3 Programming Guide.

An example application

This example application (the source of which, on installation, is copied into a\sibosdk\oopdemo directory)
prints specified directory listings to the screen. It is based on the (non-object oriented) p_prndir example
mentioned in the Building an Application chapter of the General Programming Manual. It uses object
oriented techniques to store the file names in avariable array object. This adds value by allowing the names
to be ordered so that the list can be displayed in alphabetical order, with all directory file names appearing
first.

To avoid obscuring the main principles of building an object oriented application, this example makes
minimal use of the object libraries built into the Series 3 and Series 3a. It does not, for example, use any of
the user interface mechanisms provided by the HWIM library and is therefore not atypical example of an
object oriented application. Its user interface uses the console device as used in many of the straight C
examples (that is, using neither the HWIM or the HWIF libraries) given in, say, the PLIB Reference manual.
The exampl e described in the chapter An HWIM Application - Hello World makes use of the user interface
objects and thus forms a better model for areal application.

The example source

The source for this application consists of threefiles:

prndir. cat the DI RLI ST object class definition
dirlist.c the DI RLI ST method functions
dirmain.c mai n() and auxiliary functions

The category file, prndir.cat, isasfollows:

| MAGE prndir
EXTERNAL olib

I NCLUDE varray.g
I NCLUDE p_file.h

CLASS dirlist vaxvar
Directory |ist

REPLACE va_t est sort by various criteria
TYPES

typedef struct
{
P_I NFO i nf o;

TEXT name[P_FNAMESI ZE] ;
} DIRLIST_I TEM

2 BUILDING AN OBJECT ORIENTED APPLICATION

The method function file, dirlist.c, contains only one method function, the replacement for theva_t est
method:

/*
DI RLI ST
*/

#incl ude <plib. h>
#i nclude <prndir.g>

#pragma METHOD_CALL

METHOD I NT dirlist_va_test (PR _DIRLIST *sel f, RC_VAXVAR *precl, RC_VAXVAR *prec?2)
/*
Firstly performa 2 way test on file or dir nane records
Order dir nanes before file names.
Ot herwi se order nanes al phabetically.
Return O if equal, <0 if *precl is before *prec2, >0 if after.
*/
{

FAST DI RLI ST_I TEM *pl, *p2;
FAST INT ret;

ret=0,

pl=(DI RLI ST_I TEM *) precl- >buf;

p2=(Dl RLI ST_I TEM *) pr ec2- >buf ;

if ((pl->info.status&P_FADI R)"(p2->info.status&P_FADI R))
ret=(pl->info.status&_FADIR)?-1: +1

else /* both records either dir or file names */
ret=p_scnp(&pl->name[0], &2->nanme[0]);

if (self->varoot.key. desc)
ret=(-ret); /* reverse result if required */

return(ret);

Thefiledirmain.c, listed below, uses the console device for obtaining keyboard input and displaying its
output. Provided avalid directory nameistyped in, the code builds, in an instance of the DI RLI ST variable
array class, acorresponding directory listing. The file names are stored and displayed in alphabetical order.
PressEnt er at theinput prompt to exit the program.

/*

DI RVAI N

*/

#incl ude <plib. h>
#i ncl ude <prndir.g>

LOCAL_D VO D *dcb=NULL
LOCAL_D VO D *hand;

LOCAL_C VO D error (TEXT *nsg, |NT errno)

{
TEXT bb[E_MAX_ERROR TEXT_SI ZE] ;

p_cl ose(dch);

dcb=NULL;

p_errs(&bb[0], errno);
p_printf("%: %", nmsg, &b[0]);
}

LOCAL_C VO D pani c(TEXT *nsg, |NT errno)

{

error(msg, errno);
p_l eave(0);

}

OOP REFERENCE

LOCAL_C VOI D PrintDirLine(TEXT *nanme, P_INFO *pinfo)

{

P_DAYSEC ds;
P_DATE dt;
TEXT *p, b[40];

p=&b[0] ;

i f (pinfo->status&P_FAVOLUME)
p=p_scpy(p,"Vol,");

i f (pinfo->status&P_FADI R)
p=p_scpy(p,"Dir,")

i f (pinfo->status&P_FAMOD)
p=p_scpy(p, "Mod, ");

if (!(pinfo->status&P_FAWRI TE))
p=p_scpy(p, "Read, ");

i f (pinfo->status&P_FASYSTEM
p=p_scpy(p,"Sys,");

i f (pinfo->status&P_FAH DDEN)

- p=p_scpy(p, "Hid,")

if (*(p-1)==",")
*__pzo;

p_sttods(&pi nfo->nodst, &ds) ;

p_dst odt (&ds, &dt);

p_printf("% 12s %l u %02u- %02u- ¥O2u YO2u: ¥O2u ¥%s",

name, pi nf o-
>size, dt.day+1, dt. nont h+1, dt. year, dt. hour, dt. m nute, &J[0]);

LOCAL_C VO D MakeDi rList(TEXT *dir)
{
INT ret;
DI RLI ST_I TEM d;
RC_VAXVAR rec;

p_send2(hand, O_VA_ RESET);
if ((ret=p_open(&dchb,dir,P_FDIR))!=0)

panic("Failed to open directory file",ret);
while (!(ret=p_i ow(dch, P_FREAD, &. nane[0], &d. i nfo)))

{

rec. buf =(UBYTE *) &d;

rec. |l en=sizeof (d.info)+p_slen(&d. nane[0]) +1;
p_send4(hand, O_VA_| NSERTI SQ, &rec, &);

}
p_cl ose(dcb);
dcb=NULL;
if (ret!=E_FILE_EOF)
panic("Failed to read directory",ret);
}

GLDEF_C | NT CDECL DobDir Li sts(VO D)
{
UWORD i, count ;
DI RLI ST_I TEM *pd
TEXT nane[P_FNAMESI ZE] ;

hand=f _newsend(CAT_PRNDI R_PRNDI R, C_DI RLI ST, O VA_INI T, 16);
while (p_getl (">", &ane[0], P_FNAMESI ZE))

{

MakeDi rLi st (&nane[0]);

if (!(count=p_send2(hand, O_VA_COUNT)))
p_printf("No files found");

el se

{

for (i=0;i<count;i++)

{
pd=(DI RLI ST_I TEM *) p_send3(hand, O_VA_PBUF, i) ;
PrintDirLine(&pd->name[0], &d- >i nfo);
}
}

}
p_send2(hand, O_DESTROY) ;
return(0);

}

2 BUILDING AN OBJECT ORIENTED APPLICATION

GLDEF_C I NT mai n(VOI D)

{
I NT err;

p_linklib(0); /* Link to OLIB */

if ((err=p_enter((VO D *)DoDirlLists))!=0)
error("Called p_l eave",err)

return(0);

}

Note that a standard console application is not suitable for running on an EPOC emulator. See the code in
the Using the example DYL secton of the Building a Dynamic Library chapter for how to adapt console
code so that it is suitable to run on an emulator.

Building the example application

In order to illustrate the various stages in building an object oriented application, the description of the
building of the example application makes use of a number of separate batch files. An alternative would be
to make more use of the TopSpeed development environment and this approach is used in the building of
the Hello World example, described in the chapter An HWIM Application - Hello World.

Thefirst step in building the application is to translate the category file, prndir.cat, using the tool ctran.exe.
This generates a number of files, including aprndir.g include file and aprndir.c C language sourcefile. The
generated .c file must be compiled and the resulting .obj file must be converted so that its class descriptor
dataislocated in the code segment, using ecobj.exe. The entire process is conveniently performed by
means of the supplied batch file, ct.bat (in\sibosdk\sys) whose content is:

@cho off

ctran % -e..\include -x..\include -g..\include -c -1 -s -v
if errorlevel 1 goto end

call cc %

ecobj %

send

The meaning of the various flags that can be passed to ctran.exe are explained in the Category Translation
chapter of the Object Oriented Programming Reference manual.

Note that the above batch file is set up assuming that the source codeisin a\sibosdk\oopdemo directory
and that all include files are assumed to be found in a..\include directory (which is also the destination for
include files generated by ctran). Y ou must ensure that the current TopSpeed redirection file, ts.red, is set
up to correspond with the location of al include files. In particular, the redirection file must include aline
such as:

*. G = .; ..\VINCLUDE;

Thereis no need to include the location of generated .ext filesints.red, since these are only referenced by
ctran.

The remaining .c source files must be compiled as normal, for example, by using the same cc.bat file asis
suitable for being called from ct.bat:

@cho off
call checkvid
tsc %l.c /fpunnamed /% pivi d%

This assumes the presence of an unnamed.pr project file of asimilar form to that used when compiling non-
object oriented programs, for example:

#system epoc ing
#set epocinit=iplib
#model smal |l | pi
#conpi l e %rai n
#1 i nk %mai n

Finally the application must be linked. A suitable If.bat link batch fileis:
@cho off
call checkvid
tsc 9%d.pr /1 /9% pivid%

whichiscalled as:

OOP REFERENCE

If prndir
assuming the presence of a prndir.pr file containing:

#system epoc ing

#set epocinit=iplib
#model small jp
#pragma |ink(olib.lib)
#pragma |ink(prndir)
#pragma |ink(dirlist)
#pragma |ink(dirnmain)
#link prndir

This generates a prndir.img file which may be copied to a SIBO machine and executed as any other .img file.
Note that, during the link process, two warning messages are always displayed, warning of duplicate tables.
These messages should be ignored.

Note that an object oriented application must be linked with the PLIB library since none of the object
oriented mechanisms are supported by CLIB.

The entire build process may be summarised in, say, abldpdir.bat batch file (not supplied) asfollows:

call ct prndir
call cc dirlist
call cc dirmain
If prndir

CHAPTER 3

B UILDING A DYNAMIC LIBRARY

A dynamic library (DYL) is built from a category file and one or more method function sourcefilesina
similar way to the building of an application.

A DYL differsfrom an application in the following ways:
it has no specific entry point and thus does not require amai n function
it may not contain any static data
its category file should start with a LIBRARY statement
it islinked with a different startup module

A DYL must be built with the PLIB (rather than CLIB) library, although you may, as usual, use amix of PLIB
and CLIB function calls. Y ou should not use true floating point arithmeticinaDYL, but you may use the
PLIB functions that avoid the 8087 emul ator, described in the Floating Point chapter of the PLIB Reference
manual.

An example DYL

Thisdynamic library (the source of which, oninstallation, is copied into a\sibosdk\oopdemo directory)
contains one class, providing a method to sort an array of integers, using the quicksort service provided by
PLIB.

The example source
The source for this application consists of two files:

sort.cat the | SORT object class definition
isort.c the I SORT method function

The category file, sort.cat, isasfollows:
LI BRARY sort
EXTERNAL ol ib
I NCLUDE olib.g
CLASS isort root

{

ADD sort Sort a given list of integers

}

The method function file, isort.c, contains only one method function:

OBJECT ORIENTED PROGRAMMING GUIDE

/*

| SORT. C

*/

#i ncl ude <sort.g>

#define |dataBuf ((INT *)DataBuf)

LOCAL_C I NT OrdFunc(INT i, INT j, VO D *DataBuf)

/*
Order function used in gsort
*/
{
return(ldataBuf[i]-IldataBuf[j]);
}
LOCAL_C VO D ExchFunc(INT i,INT j, VO D *Dat aBuf)
/*
Exchange function used in qgsort
*/
{
I NT k;

k=l dataBuf[i];

| dat aBuf [i] =l dataBuf[j];
| dat aBuf [j] =k;

}

#pragma METHOD_CALL

METHOD VOI D isort_sort(PR_ROOT *self,INT *start, | NT num

{
p_gsort(num OrdFunc, ExchFunc, start);

}
Building the example DYL

Asin the previous chapter, in order to illustrate the various stages, a number of separate batch files are
used. Again, an alternative would be to use the more integrated approach asis used in the building of the
Hello World example, described in the chapter An HWIM Application - Hello World.

Thefirst step in building the DY L isto translate the category file, sort.cat, using the tool ctran.exe. This
generates a number of files, including asort.g include file and a sort.c C language sourcefile.

Asin the case of building an application, the generated .c file must be compiled and the resulting .obj file
must be converted so that its class descriptor datais|ocated in the code segment. The entire processis
again conveniently performed by means of the same ct.bat batch file asis used for application category
files. See the Building an Object Oriented Application chapter for further details.

The remaining .c sourcefiles (in this case, only isort.c) must be compiled as normal, using the same cc.bat
fileasis suitable for compiling application sourcefiles.

Finally the DY L must be linked. Asfor building an application, thelink is controlled by a project file, in this
case sort.pr:

#system epoc dyl

#set epocinit=iplib
#nmodel small jpi
#pragma link(olib.lib)
#pragma |ink(sort)
#pragma |ink(isort)
#1ink sort

The significant difference between aproject filefor aDYL and that for an object oriented application is that
thefiletypeisdeclared asdyl , rather thani mg. Again, it is essential that the PLIB library be used.

Y ou may use the same If.bat link batch file asfor linking applications, but you may wish to use the following
Ifc.bat variant:

@cho off

if exist 9%l.dyl del 9%l.dyl
call checkvid

tsc %.pr /1 /1% pivid%h

3-2

3 BUILDING A DYNAMIC LIBRARY

Thisensures that any failure in the link process does not result in an older version of the DY L being left. It
iscalled as:

I fc sort
The entire build process may be summarised in adylbld.bat batch file, as follows:

call ct sort
call cc isort
I fc sort

Using the example DYL

The following code, inrunsort.c, illustrates a simple application that usessort.dyl to sort the contents of an
array of ten integers.

/ *
RUNSORT. C
*/

#i ncl ude <plib. h>
#i ncl ude <sort.g>

GLREF_D VO D *Dat CommandPtr;

GLDEF_D P_RECT _Def ScreenRect ;

LOCAL_D INT array[] = {10,1,5,7,9,3,6, 8,4, 2};
#pragm save, ENTER_CALL

LOCAL_C | NT RunSort (HANDLE dyl)

{
VO D *sort;

sort=f_new i bh(dyl, C_I SORT);
p_send4(sort, O SORT, &array[0], 10);
p_send2(sort, O DESTROY);

return(0);

}

#pragma restore

GLDEF_C I NT mai n(VOl D)

{

INT err,i;

HANDLE dyl ;

TEXT buf [P_FNAMESI ZE] ;

p_fparse("sort.dyl", Dat CommandPt r, &uf [0], NULL) ;
err=p_Il oadl i b(&buf[0], &yl , TRUE) ;
if (lerr)

_Def ScreenRect.tl.x=0; /* set consol e wi ndow size */
_Def ScreenRect . tl.y=0;

_Def ScreenRect . br.x=40; /* 40 colums */

_Def ScreenRect. br.y=8; /[/* 8 rows */

err=p_enter2(RunSort, dyl);

p_unl oadl i b(dyl);

for (i=0;i<10;i ++)
p_printf("%",array[i]);

}

return(err);

}

Inthisexamplethe DYL isloaded and linked by the call top_I oadl i b. Sincethe DY L nameis parsed with
Dat CommandPt r, sort.dyl will be expected to be found in the directory from which runsort is executed.

Reporting is viaan automatically opened console window, whose size is set to be suitable for the Series 3
screen. Note that the code to set the console window size, using_Def Scr eenRect , isonly necessary when
you want to override the default size, or when the application isto be run on an emulator. If you include this
codein an application, ignore the spurious warning of duplication that is given by the linker.

3-3

OBJECT ORIENTED PROGRAMMING GUIDE

A DYL that supplies the ROOT class

Since OLIB contains classes that provide many basic services, most DY Lswill either reference or subclass
one or more OLIB classes. They will therefore need to declare an external referenceto OLIB, asin the
previous example.

In that example, however, the external reference is necessary only because the | SORT class subclasses the
ROOT class provided by the OLIB dynamic library. In such acase it may be more reasonablefor aDYL to
define its own ROOT class and be independent of OLIB. The following sample code provides the same
integer sorting functionality as the previous example, but without requiring an external reference to OLIB.

The category file, rsort.cat, isasfollows:
LI BRARY rsort

I NCLUDE p_std. h
| NCLUDE p_object.h

CLASS r oot

{
ADD dest r oy

ADD sort Sort a given list of integers
PROPERTY

{
P_OBJECT pc; Class |ink

}
}

The class definition of ROOT duplicates that of the OLIB ROOT class with, in this case, the addition of the
sort method.

The method function sourcefile, root.c is almost identical with that of isort.c, the only significant difference
being that the method functionisrenamed tor oot _sort.

/*

ROOT. C

*/

#i ncl ude <rsort.g>

#define |dataBuf ((INT *)DataBuf)

LOCAL_C I NT OrdFunc(INT i,INT j,VO D *Dat aBuf)
/*

Order function used in gsort

*/

return(ldataBuf[i]-IldataBuf[j]);

}
LOCAL_C VO D ExchFunc(INT i,INT j, VO D *Dat aBuf)
/*
Exchange function used in qgsort
*/
{
I NT k;

k=l dataBuf[i];

| dat aBuf [i] =l dataBuf[j];
| dat aBuf [j] =k;

}

#pragma METHOD_CALL

METHOD VOI D root _sort (PR_ROOT *sel f,INT *start, | NT num

{
p_gsort (num OrdFunc, ExchFunc, start);

Note that there is no need to providether oot _dest r oy method function, since thisis supplied by the
PLIB library.

3-4

3 BUILDING A DYNAMIC LIBRARY

Building the DYL follows exactly asin the previous example, using the link project file, rsort.pr:

#system epoc dyl

#set epocinit=iplib
#model small jpi
#pragma |link(olib.lib)
#pragma link(rsort)
#pragma |ink(root)
#link rsort

Building DYLs into an application

One or more DY Ls may be combined into a.img or a.app file. The techniqueis similar to the add-file
technology that can combine aresourcefile, anicon and a shell datafile with a.img file. A significant
difference isthat whereas add-files are limited to a maximum of four add-files, thereisno limit on the number
of DY Lsthat may be added.

The main advantage of building DY Lsinto an application isthat thereis then no danger of the variousfiles
becoming separated, or of an essential DY L being accidentally deleted. There can never be any confusion
over thelocation of aDYL and if the application is present, its DY Ls must also be present.

DYL add-file lists

A DYL add-filelistisatext filewith a.dfl extension, containing alist of the names of the DY Lsthat areto be
combined with a.img file. For example, the Series 3a Spreadsheet has a .dfl file with the content:

shfl.dyl
shgf . dyl
shgp. dyl
shdb. dyl
sht a. dyl
shbr. dyl
shpr. dyl
shrg. dyl
shvw. dyl
shso. dyl

to build ten DY Lsinto the Spreadsheet application.

When any .pr project file isinvoked that leads to the building of a.img file, acheck is made for the existence
of a.dfl file with the same name as the application. If thisfile exists, the DY Lsit lists are automatically built
into the .img file, in the order in which they arelisted.

Accessing a built-in DYL

A DYL that isbuilt into an application is accessed by use of the functionsp_openl i b and

p_l oadfil elib., asinthefollowing example. Therequired DYL isspecifiedinacall top_I oadfilelib by
an index, counting from zero, where the numbering order is determined by the order in whichthe DY Ls are
listed in the .dfl file.

The example code, dylsort.c, isavariant of runsort.c, described earlier. It has exactly the same action asthe
earlier example, but sort.dyl is built into the resulting .img file, rather than being a separatefile.

/ *

DYLSORT. C

*/

#incl ude <plib. h>
#i ncl ude <sort.g>

GLREF_D VO D *Dat ConmandPtr ;
GLDEF_D P_RECT _Def ScreenRect ;
LOCAL_D INT array[] = {10,1,5,7,9,3,6,8, 4, 2};

#pragm save, ENTER _CALL

OBJECT ORIENTED PROGRAMMING GUIDE

LOCAL_C | NT RunSort (HANDLE dyl)

{
VO D *sort;

sort=f_new i bh(dyl, C_| SORT);
p_send4(sort, O SORT, &array[0], 10);
p_send2(sort, O DESTROY);

return(0);

}

#pragm restore

GLDEF_C | NT mai n(VO D)
{ .
INT err,i;
HANDLE dyl ;
VO D *dcb;

p_openli b(&dch, Dat CommandPtr); /* open application .ing file for DYL
access */

err=p_l oadfilelib(dch, O, &yl, TRUE); /* load the first (and only) DYL */

if (lerr)

_Def ScreenRect . t 1.
_Def ScreenRect . t1l.
_Def ScreenRect . br.
_Def ScreenRect . br.

< X< X
I
oA~ OO

o=

p_printf("Sorting...");
err=p_enter2(RunSort, dyl);
p_unl oadl i b(dyl);
for (i=0;i<10;i +=2)
p_printf("%d %4d",array[i],array[i+1]);
p_getch();
}
return(err);

}

The only difference in the code between this example and runsort.c isin thefirst two lines of mai n() . In
contrast with the earlier example, there is no need to parse the application's full file specification (pointed to
by Dat CommandPt r) withthe DYL file name, sincethefile containing the DYL isthe application fileitself.

The DYL add-filelist isdylsort.dfl, which contains the single line:
sort.dyl
The application can be built in asimilar way to runsort, that is, by:

cc dylsort
I f dylsort

Running edump.exe, by typing:
edunp dyl sort

produces the following output, showing the presence of the built-in sort.dyl.

3 BUILDING A DYNAMIC LIBRARY

EDunp V4.30F (09/11/93) Copyright (C) Psion PLC 1989-92
LOC: : E: \ SI BOSDK\ OCOPDEMO\ DYLSORT. | MG | MAGE file data

| mage version 200F
Code Segnent 0330 (bytes)
Initial IP 0000
St ack 1000 (bytes)
Dat a 0070 (bytes)
Heap 0800 (bytes)

Dat a Segnent
Initialized data

1870 (bytes)
0050 (bytes)

Code checksum 765A

Dat a checksum 06B7

Code Version 100F

Priority 0080

Header size 0040 (bytes)

Dyl count 0001

Dyl table offset = 000005E0

Dyl 00 SORT. DYL of fset = 000003CO0
I mage file size = 000005F2 (bytes)

CHAPTER 4

AN HWIM EXAMPLE - HELLO WORLD

This chapter describes aminimal HWIM application. The application displays a bordered window
containing the text "Hello world" and has a menu bar that offers asingle Exit option. It iswritten so that it
will run on either the Series 3 or the Series 3a (in compatibility mode).

Note that this application is not intended to exercise the full potential of OOP. Instead, it givesa"feel" for
the construction of an OOP application and, whileits broad structure will be described, afull understanding
may not be apparent until later chaptersin this manual have been read. The example code does, however,
provide the basic framework of all HWIM applications and may be used as a starting point for the
construction of more complex applications.

The source of this application is supplied in the \sibosdk\oopdemo directory that can be installed from the C
SDK disks. The main source files for the application are listed below, and are described in more detail in the
following sections.

Category file, hello.cat
I MAGE hell o

EXTERNAL olib
EXTERNAL hwi m

| NCLUDE hwi mman. g

CLASS hel | ows wserv
wi ndow server active object

{
REPLACE ws_dyn_init

}

CLASS hel | obw bwi n
a sinple bordered wi ndow

REPLACE wn_i ni t
REPLACE wn_dr aw

}
Resource file, hello.rss

/ *
HELLO. RSS

English resource file for Hello World application
*/

#incl ude <hwi mrh>
#incl ude <hello.rg>

RESOURCE WSERV_I| NFO hel | o_accs
{
menbar _i d=hel | o_nenbar;
first_comrO_COM EXI T,
accel ={"' x"'}; /* Exit */

OBJECT ORIENTED PROGRAMMING GUIDE

RESOURCE MENU_BAR hel | o_nenbar

{
items=
{
MENU_BAR_| TEM
{
menu_i d=speci al _menu;
nb_i tem=" Speci al ";
}
b
}
RESOURCE MENU speci al _nenu
{
items =
{
MENU_I TEM
{
com i d=0O_COM EXI T;
m_item="Exit";
}
b
}

Source code, o_hello.c

/*
O_HELLO. C
*/

#i ncl ude <hw mman. g>
#i ncl ude <hell 0. g>

GLREF_D WSERV_SPEC *wserv_channel ;

GLDEF_C VO D mai n(VO D)
{
I N_HW MVAN app;
I N_WSERV ws;

p_linklib(0);

app. fl ags=FLG_APPMAN_RSCFI LE| FLG_APPMAN_SRSCFI LE| FLG_APPMAN_CLEAN;
app. wserv_cat =p_get|i bh(CAT_HELLO HELLO);

ws. com cat =p_get | i bh(CAT_HELLO HW' M ;

app. wserv_cl ass=C_HELLOWS;

ws. com cl ass=C_COMMAN;

p_send4(p_new(CAT_HELLO HW M C_HW MVAN), O AM | NI T, &app, &ws) ;

}

#pragma METHOD_CALL

METHOD VO D hel l ows_ws_dyn_i nit (PR_HELLOWS *sel f)
{
sel f->wserv.cli=f_new CAT_HELLO HELLO, C_ HELLOBW ;
p_send2(sel f->wserv.cli, O WN_INIT);
}

METHOD VO D hel | obw_wn_i nit (PR_HELLOBW *sel f)
W W NDATA wd;

wd. extent.tl.x=0;

wd. extent.tl.y=0;

wd. ext ent . wi dt h=wser v_channel - >conn. i nf 0. pi xel s. x;
wd. ext ent . hei ght =wser v_channel - >conn. i nf 0. pi xel s. y;
p_send5(sel f, O WN_CONNECT, NULL, W W N_EXTENT, &wd) ;
p_send3(sel f, O WN_VI SI BLE, W_I NI TVI S) ;

p_send3(sel f, O WN_EMPHASI SE, TRUE) ;

}

4 AN HWIM EXAMPLE - HELLO WORLD

METHOD VO D hel | obw_wn_dr aw(PR_HELLOBW *sel f)
{
p_supersend2(sel f, O WN_DRAW ;
gPri nt Text (50, 50, "Hel l o Worl d", 11);
}

The category file

The application's category fileisasfollows:
| MAGE hell o

EXTERNAL olib
EXTERNAL hwi m

| NCLUDE hwi nman. g

CLASS hel | ows wser v
wi ndow server active object

{
REPLACE ws_dyn_init
}

CLASS hel | obw bwi n
a sinmple bordered wi ndow

{

REPLACE wn_i ni t
REPLACE wn_dr aw
}

The | MAGE statement identifies the file as being one that will create a category for an application (.img or
.app) file. Note that the external references to the OLIB and HWIM DY Ls are mandatory for all HWIM
applications.

The category file defines two application-specific classes, HELLOWS and HELLOBW T hese are subclasses of
the HWIM WsERV window server active object and BW N bordered window classes respectively. These two
subclasses add no property or new methods; they just replace methods that are defined in a superclass.

TheBW N classisdescribed in more detail in the Windows chapter.

The resource externals file

Theresource file, described in the next section, contains areference to the O coMm _EXI T method number.
Thissymbol is defined in the hwimman.g include file (itself generated by the translation of the category
containing the hwi mman class).

By building the resource externalsfile, with file name hello.re, containing the following lines:
#i ncl ude <hw mman. g>
_O COMEXIT
Thefilehello.rg is generated by the re.bat batch file by typing:
re hello
and containsthe singleline:
#define O COMEXIT 7

This process has extracted the definition of the symbol 0_com EXI T from the hwimman.g include file, so
that the generated .rg file can be #i ncl uded in the application resource file instead of the larger
hwimman.g.

OBJECT ORIENTED PROGRAMMING GUIDE

The resource file

Theresourcefile, hello.rss, is one of the simplest possible HWIM application resource files:

/ *
HELLO. RSS

English resource file for Hello World application
*/

#i ncl ude <hwi mrh>
#i ncl ude <hello.rg>

RESOURCE WSERV_I| NFO hel | o_accs

menbar _i d=hel | o_menbar ;
first_com=O_COM EXIT;
accel ={"'x"'}; [* Exit */

}

RESOURCE MENU_BAR hel | o_nenbar
{

items=

{
MENU_BAR_| TEM

{
menu_i d=speci al _nenu;
nmb_i tem=" Speci al ";

}

}

RESOURCE MENU speci al _menu
{

items =

{
MENU_| TEM

{
com i d=0O_COM _EXI T;
m_item="Exit";

}

}

In addition to hello.rg, it includes the HWIM resource header file, hwim.rh, that defines the standard
resource structures used by HWIM applications (for example, the WSERV_I NFO resource structure). This
resource file contains three resources that must be present in all HWIM application resource files, being
used by the HWIM command menu mechanism.

Thefirst resource must always be aWsERV_I NFO resource structure. Its reference name (in this case,

hel | o_accs) isnormally not relevant. Themenbar _i d element must refer to afollowing MENU_BAR
resource structure that defines the content of the application's menu bar, andf i r st _comisset to the
method number of a method of the application's command manager (usually, asin thiscase, O_COM_EXI T).
Theaccel element definesone or more accelerator keypresses. Each accelerator may be used to invoke a
command menu option by executing acommand manager method function. In this example thereis only one
accelerator, Psion-X, which executes the command manager's exit method (with method number

O_COM _EXI T).

The MENU_BAR resource defines a menu bar containing a single menu, with menu name " Special”, and an
associated pull-down menu defined in the MENU resource structure referenced by speci al _menu. Thispull-
down menu contains only the single menu option "Exit".

The source code

The codeis sufficiently brief that thereis no advantage in writing it asa number of separate C modules. All
the codeisinthefile o_hello.c (so named to distinguish it from the hello.c that is generated during the
translation of hello.cat).

4-4

4 AN HWIM EXAMPLE - HELLO WORLD

/*
O_HELLO. C
*/

#i ncl ude <hw mman. g>
#i ncl ude <hell o.g>

GLREF_D WSBERV_SPEC *wserv_channel ;

GLDEF_C VO D mmi n(VO D)
{
I N_HW MMVAN app;
I N_WSERV ws;

p_linklib(0);

app. fl ags=FLG_APPMAN_RSCFI LE| FLG_APPMAN_SRSCFI LE| FLG_APPMAN_CLEAN;
app. wserv_cat=p_get!li bh(CAT_HELLO HELLO);

ws. com cat =p_get | i bh(CAT_HELLO HW M ;

app. wserv_cl ass=C_HELLOWS;

ws. com cl ass=C_COMMAN;

p_send4(p_new(CAT_HELLO HW M C_HW MVAN), O AM | NI T, &app, &ws) ;

}

#pragma METHOD_CALL
/* APPLI CATI ON- SPECI FI C W NDOW SERVER OBJECT */

METHOD VO D hell ows_ws_dyn_i nit (PR_HELLOWAS *sel f)
{
sel f->wserv.cli=f_new(CAT_HELLO HELLO, C_HELLOBW ;
p_send2(sel f->wserv.cli, O WN_INIT);
}

/* BORDERED CLI ENT W NDOW */

METHOD VOI D hel | obw_wn_i ni t (PR_HELLOBW *sel f)

{
W W NDATA wd;

.extent.tl.x=0;

.extent.tl.y=0;

.extent.w dt h=wserv_channel - >conn. i nfo. pi xel s. X;
.extent. hei ght =wserv_channel - >conn. i nf 0. pi xel s. y;
p_send5(sel f, O_WN_CONNECT, NULL, W W N_EXTENT, &wd) ;
p_send3(sel f, O WN_VI SI BLE, W_I NI TVI S) ;

p_send3(sel f, O WN_EMPHASI SE, TRUE) ;

}

METHOD VOI D hel | obw_wn_dr aw(PR_HELLOBW *sel f)
{
p_supersend2(sel f, O WN_DRAW ;
gPri nt Text (50, 50, "Hel l o Worl d", 11);
}

8888

Main

Themai n() functionisbasically as specified in the Introduction chapter. Note that, since the window
server active object is subclassed by the application, it isindicated to bein the local category (category
number CAT_HELLO_HELLO). In contrast, the application uses the basic command manager supplied by
HWIM and thusin the HWIM external category (category number CAT_HELLO HW M).

The method functions are preceded by:
#pragma METHOD_CALL
to ensure the correct calling convention.

Window server object

Thews_dyn_i ni t method supplied for the HELLOWS class simply creates an instance of the HELLOBW
bordered window subclass and sendsit awWN_I NI T message. The window is set to be the application's client
window by writing its handle to the window server active object'swser v. cl i property.

OBJECT ORIENTED PROGRAMMING GUIDE

Client window

Initialisation of the bordered client window sets the window's size to the screen dimensions, as read from the
WSERV_SPEC struct pointed to by the magic static wser v_channel . Most applicati on-specific window
classes will supply awn_i ni t method that, at some stage, sends a WN_CONNECT message. Normally, asin
the present case, the client window is atop-level window (it has no parent) asindicated by the NULL
parameter to the WN_CONNECT message.

Thewindow is made visible and set to the emphasi sed state by sending WN_VI SI BLE and WN_EMPHASI SE
messages. These messages are processed by superclass method functions (described in the Windows
chapter of thismanual).

Thewn_dr aw method is not explicitly called by application code, but will be called directly from system code
whenever the window must be drawn (such aswhen it first becomes visible). See also the The draw/redraw
mechanism section of the Windows chapter.

After supersending the WN_DRAWMessage (handled by the BW N superclass, to draw the window's border)
the text "Hello World" is drawn, using the window server functiongPri nt Text .

Building the application

Unlike the simple examplesin earlier chapters, the "Hello World" example provides a good basic model for
most object oriented applications written for the Series 3 and Series 3a machines. The mechanism supplied
for building this example, described below, is suitable for use with any such application. It usesthe
TopSpeed Make mode to invoke the project system, in order to minimise the amount of compilation and
linking required to make sure that the .img fileis up-to-date.

The .pr filefor the "Hello World" application ishello.pr and islisted below.

#system epoc i ng
#set epocinit=iplib
#model small jp

#abort on

#set versi on=0x100F
#set priority=0x80
#set heapsi ze=0x80

#conpi |l e %mi n. cat

#i f % emake #or (%min.rg #older %mmin.re) #or (%mmin.rg #older %min.g) #then
#run "re %mmi n" no_wi ndow no_abort
#endi f

#if (%rain.rsg #ol der %min.rss) #or (%min.rsg #ol der %main.rg) #then
#run "rs %mai n" no_wi ndow no_abort
#endi f

#if %min.rzc #ol der %main.rsg #then
#run "rch %mi n" no_w ndow no_abort
#endi f

#conmpile o_hello.c

#i f %mai n. shd #ol der %mai n. ns #t hen
#run "makeshd %mai n" no_wi ndow no_abort
#file delete %main.ing

#endi f

#if (%main.inmg #older %min.afl) #or (%min.ing #ol der %main.pic) #then
#file delete %min.ing
#endi f

#pragma |ink(olib.lib)
#pragma | ink(hwi mlib)

#1i nk %mai n

4 AN HWIM EXAMPLE - HELLO WORLD

The TopSpeed project system takes account of the dependenciesin the application's C source files but, as
can be seen in this example, the .pr file must explicitly take into account the dependencies of all other files
that are needed to build the application.

The hello.pr project fileis suitable for use as amodel for building any object oriented application using the
HWIM library. In the vast mgjority of cases the main change will be to replace the line:

#conpile %_hello.c

with one or more#conpi | e statements to compile the various C source files that contain the application's
code.

In this example the variablesver si on, pri ori ty andheapsi ze are set (as hexadecimal numbers) to their
default values - they will be given these values automatically if they are not set in the .pr file. Only in
exceptional circumstances will you need to alter the application's priority, but you should set both the
version number and the heap size as a matter of course. See the General System Services chapter of the
PLIB Reference manual for a description of the format of aversion number. The heap size is measured in
paragraphs (16-byte units) and should normally be set to avalue that is not |ess than the amount of the
heap used when the application is started up (one way of determining thisisto use the Spy application,
described in the Series 3/3a Programming Guide). There is more information about the use of these three
variablesin the Building an Application chapter of the General Programming Manual.

The version of tsprj.txt supplied with the SDK contains a compiler entry to handle the transl ation of
category files. It istherefore important to copy thisfile into your \ts\sys directory and runtscfg.exe, as
described in the Installation chapter of the General Programming Manual, even if you are upgrading from
an earlier version of the SDK. Thisentry, which islisted below, takes into account the creation dates of the
category file and the .g file that is generated from it when determining if the category file needs translating.

#decl are_conpi l er cat=
"#split YWsrc
#set make=%% emake
#i f 9emake #or %mane. g #ol der 9%mane. cat #t hen
#run "ctran %mane -c -s -v -1 -e..\include\ -x..\include\ -g..\include\"
no_wi ndow no_abort
#rundl | TSC %mane. ¢ %mane. obj
#run "ecobj %mane.obj" no_w ndow no_abort
#endi f
#pragma |ink(%mane. obj)

If you include application-specific header filesin the application's category file you will need to add an
explicit check inyour .pr file to ensure that the application isrebuilt properly. If, for example, your category
file containsthe line:

| NCLUDE myheader. h
you will need to insert the lines:
#i f myheader.h #ol der %mai n.cat #then
#file delete %min.g
#endi f
immediately before the line:

#conpi | e %mai n. cat

Apart fromthe#pr agma |i nk statementsto include the standard libraries (OLIB and HWIM) the remainder
of the .pr file takes care of the dependencies of the application on the remaining component filesin afairly
straightforward way.

If you develop an application that contains built-in DY Lsyou will need to add further checks on the creation
dates of the .dfl DYL add-filelist and the DY Lsthat it lists. A suitable check for the .dfl file would be:

#1 f %min.inmg #ol der %min.df| #then
#file delete %min.ing
#endi f

and acheck for mydyl.dyl is:
#i f %min.inmg #older mydyl.dyl #then

#file delete %min.ing
#endi f

OBJECT ORIENTED PROGRAMMING GUIDE

Any such lines should be inserted immediately before the first#pr agma | i nk statement.
The"Hello World" application is built by typing:

make hello
This makes use of amake.bat batch file, whose contentsis as follows:

@cho off

call checkvid

if not exist %l.pr goto error

tscx /m% /% pivid%

tscx /mo%l /% pivid%

goto end

serror

echo Project file %l.pr does not exist
s end

Note that this batch file usest scx, rather thant sc, so that full use may be made of the extended memory of
your PC. If you do not have extended memory, you should replace each occurrence of t scx witht sc.

The batch file uses two passes of the TopSpeed project system. Thisis necessary because the project
system does not take into account dependencies that change dynamically as aresult of the ‘compilation’ of
the Psion-specific sourcefiles. Thiswill not normally result in any unnecessary repetitions of compilation or
linking.

Theresult of typingmake hel | o isthe creation of hello.img. The final step in producing the "Hello World"
applicationis (optionally) to rename hello.img as hello.app.

Variants
Y ou may like to experiment with making the following variations to the supplied example code:

To make the application take advantage of the larger screen size on the Series 3a, OR the flag
FLG_APPMAN_FULLSCREEN into the flag values assigned toapp. f | ags inmai n() .

Inthe HELLOWS ws_dyn_i ni t method, the lines:;

sel f->wserv.cli=f_new CAT_HELLO HELLO, C_ HELLOBW ;
p_send2(sel f->wserv.cli, O WN_INIT);

could be replaced by the more compact:

sel f->wserv.cli=f_newsend(CAT_HELLO HELLO, C_HELLOBW O WN_I NI T);
Inthe HELLOBWwn_i ni t method, replace

p_send3(sel f, O WN_VI SI BLE, W_I NI TVI S) ;
with the equival ent, but more compact:

hinitVis(self);

Modify the bordered window'swn_dr aw method to centre the text in the window, in away that
worksfor both the Series 3 and Series 3a, by reading the screen dimensions from
wser v_channel - >conn. i nfo. pi xel s.

Put the"Hello World" text in the resource file and load it from there (for guidance, see the examples
in the Commandsand Command Menus chapter).

CHAPTER 5

COMMANDS AND COMMAND MENUS

The command manager

The command manager is created and initialised by system code during the start-up process, immediately
before the window server active object receivesaws_DYN_| NI T message. If the creation of the command
manager fails the application process will terminate immediately. If the command manager is created
successfully, its handleis accessible viathe handl e of the window server active object, held in the magic
static w_ws. This static should be declared as:

GLREF_D PR WSERV *w_ws;

and the command manager's handleis thenw_ws- >wser v. com See also the utility function
hwser vConsend that is used by system code to send messages to the command manager.

The HWIM covMvAN class definition (whose associated generated header file iscomman.g) isasfollows:

CLASS comman root
Supercl ass of all conmmand managers

{

ADD com i ni t =p_dumy User's own initialisation

ADD com st atwi n=p_dunmy Toggl e permanent status w ndow

ADD com accl _check=p_true Cal | ed whenever an accelerator is nmatched
ADD com nmenu=p_dunmmy Cal | ed whenever a nmenu is pulled down

ADD com node_change=p_dumy W KEY_MODE recei ved
ADD com fil e_change=p_dummy The core code for open or new

ADD com exit Message sent here on exit accel erator
CONSTANTS

{

O_COM_SYS_LAST O COM EXI'T

}
}

The supplied methods of the command manager are called by system code. Asis apparent from the class
definition, the supplied method functions do very little. Although there is no need to replace any of these
methods, they are intended to be replaced, as necessary, in an application-specific subclass. The supplied
com exit method, for example, simply callsp_exi t (0) . Whilethisis sufficient for asimple application, the
method will usually be replaced - particularly if the application isfile-based. The uses of most of these
methods, and the circumstances under which the corresponding messages are sent by system code are
described later inthischapter. Thecom fi | e_change andcom exi t methods are described in the File
Based Applicationschapter.

1Depending on the application, it may be more appropriate to declarew_ws as a pointer to an instance of an
application-specific subclass of WSERV.

OBJECT ORIENTED PROGRAMMING GUIDE

Adding command options

Any HWIM application that has a more complex set of commands than that of the "Hello World" example
applicaton will need to supply more extensive menu bar and pull-down menu resources. It will also need to
subclass the cOMvAN command manager class.

The basic mechanism for extending the number of command options involves the following steps:

Extend the menu bar and pull-down menu resources in the application resource file to include a menu
item for each command.

Subclass the command manager to add a new method for each additional command and supply a
method function for each method.2 The methods must appear consecutively in the command manager's
class definition and normally must immediately follow the last (com _exi t) method of the coMvAN
superclass.

Include an accelerator in the first resource in the application resource file for each additional command.
There must be an accelerator for every command option that appears in the menus, and the accelerators
must appear in the same order as the method declarationsin the command manager class. Note,
however, that there need be no rel ation between the order of the accelerators and the order in which the
commands appear in the command menus. The Exit option, for example, conventionally appears asthe
last item in the last menu, although it is normally first in the list of accelerators.

The sending of the appropriate message to the command manager when acommand menu option is
selected, either by means of an accelerator keypress or viathe pull-down menus, is handled by system code
in the window server active object and requires no additional application-specific code. The method
functions that correspond to the menu options are not expected to return avalue and should be declared as
val D functions. In general these functions do not take parameters, but may optionally make use of asingle
| NT parameter, containing the function's method number, this being passed in system-generated messages
(see thelater Sharing method function code section).

Example

The following example extends the "Hello World" example to provide two additional command optionsin a
separate pull-down menu. The additional commands switch the display to one of two alternative messages.
The source code is supplied in the fileshello2.rss, hello2.cat and o_hello2.c.

Theresourcefileisasfollows:

/*
HELLO2. RSS

English resource file
*/

#i ncl ude <hwi mrh>
#i ncl ude <hello02.rg>

RESOURCE WSERV_I| NFO hel | o_accs
{
menbar _i d=hel | o_nenbar
first_com=O_COM EXI T
accel ={"' x", /* Exit */
"h', /* Hello */
"b'}; /* Bye */

2Note that, if appropriate, several commands may share the code of asingle method function. This
alternative is described later.

5-2

5 COMMANDS AND COMMAND MENUS

RESOURCE MENU_BAR hel | o_menbar

{
itens=
{
MENU_BAR_| TEM
{
menu_i d=nessage_nenu;
nb_itenm=" Message";
b
MENU_BAR_| TEM
{
menu_i d=speci al _menu;
nmb_i t em=" Speci al ";
}
b
}
RESOURCE MENU nessage_nenu
{
items =
{
MENU_| TEM
{
com_ i d=0O_HCM HELLG;
m_item="Say hell o";
b,
MENU_| TEM
{
com i d=0O_HCM BYE;
m_items" Say goodbye";
}
b
}
RESOURCE MENU speci al _nmenu
{
itens =
{
MENU_| TEM

{
com. i d=0O_COM EXI T;
m_item"Exit";
}
}s
}

RESOURCE STRI NG hel |l o_nmessage {str="Hello World";}
RESOURCE STRI NG bye_nessage {str="Goodbye";}

Thelist of accelerators contains three items, and the menu bar has two pull-down menus; a‘'Message' menu
and a'Special’ menu. The 'Message' menu contains the two options 'Say hello' and 'Say goodbye',
associated with the command manager methods hcm_hello and hcm_bye respectively. The twotext
messages to be displayed are included in the resource file, rather than appearing as data in the source code.

The category file definesaHELLO2 category (the | MAGE statement iS| MAGE hel | 02) that contains an
additional class definition for the HELLOCM class - a subclass of the HWIM CoMvAN cl ass:

CLASS hell ocm comman
command manager

{

ADD hcm hell o
ADD hcm bye

}

Note that the order of declaration of the methods must agree with the order of the associated acceleratorsin
the resourcefile.

The corresponding command manager method functions are:

OBJECT ORIENTED PROGRAMMING GUIDE

METHOD VO D hell ocm_hcm hel | o(PR_HELLOCM *sel f)

p_send3(w_ws->wserv.cli, O W_SET, FALSE) ;
}

METHOD VO D hell ocm_hcm bye(PR_HELLOCM *sel f)

{
p_send3(w_ws->wserv. cli, O WN_SET, TRUE) ;
}

Both of these methods send aWN_SET message to the client window, whose handle is available as
w_ws->wserv. cli (similarto accessing the command manager itself, as described earlier). Note that these
actions correspond to adesign decision that the client window should itself be responsible for recording
which message to display.

The client window class thus needs to replace thewn_set method and specify an item of property to record
the message state, asfollows:

CLASS hel | obw bwi n
bordered client w ndow

{

REPLACE wn_init
REPLACE wn_dr aw
REPLACE wn_set

PROPERTY
{
UWORD i shye;
}

}

The client window wn_dr aw method uses the state of itsi shye property to determine which of the two text
resources to display:

METHOD VOI D hel | obw_wn_dr aw(PR_HELLOBW *sel f)

{
Ul NT resid;
TEXT buf[40];

resi d=sel f - >hel | obw. i sbye ? BYE_MESSAGE: HELLO MESSAGE;
p_send4(w_am O AM LOAD RES BUF, resid, &uf[0]); /* load the resource */

p_supersend2(sel f, O WN_DRAW ; /* draw the border */
gPri nt Text (50, 50, &uf [0], p_sl en(&buf[0]));
}

Note that the line:
p_send4(w_am O _AM LOAD_RES BUF, resi d, &uf[0]);

could be replaced by the following use of the hLoadResBuf utility function:
hLoadResBuf (resi d, &uf[0]);

Thewn_set method setsor clearsthis property and causes the window to be drawn with the appropriate
message:

METHOD VOI D hel | obw_wn_set (PR_HELLOBW *sel f, U NT i sbye)

sel f->hel | obw. i shye=i shye;
p_send2(sel f, O WN_DODRAW ;
}

Note that the application does not explicitly write to the isbye property on initialisation of the window. It
takes advantage of the fact that property is zero filled when an object is created.

Essentially the same effect could be achieved by replacing the line:
p_send2(sel f, O WN_DODRAW ;
with the window server call:

wl nval i dateW n(sel f->win.id);

5 COMMANDS AND COMMAND MENUS

Thiswould result in the client window receiving, at some future time, a \WN_REDRAWMessage. This technique
might prove useful if two or more things could change that require the window to be redrawn. If all such
changes invalidate the window, thereisless likelihood that each change will cause the window to be
redrawn.

In this example the difference between the two alternativesis not noticeable. Invalidating the window
causes inter-process messages to be sent between the application and the window server, whereas the
sending of the WN_DODRAWMessage does not and will, in general, result in the window being updated more
responsively. Which of these two techniques to use dependsto alarge extent on the requirements of a
particular application.

The code of mai n() must also be modified slightly to take into account the use of an application-specific
command manager:

GLDEF_C VO D mai n(VO D)
{
I N_HW MMAN app;
I N_WSERV ws;

#i f ndef EPOC
GLREF_D P_DEVICE p_file;
GLREF_D P_DEVI CE p_seri al;
p_inst(&p_file, & _serial, NULL_D);
#endi f
p_linklib(0);
app. f | ags=FLG_APPMAN_RSCFI LE| FLG_APPMAN_CLEAN| FLG_APPMAN_SRSCFI LE;
app. wserv_cat =p_get|i bh(CAT_HELLO2_HELLQO2);
ws. com cat =p_get | i bh(CAT_HELLO2_ HELLQ2);
app. wserv_cl ass=C_HELLOWS;
ws. com cl ass=C_HELLOCM
p_send4(p_new(CAT_HELLO2_HW M C_HW MMAN), O AM_ I NI T, &app, &ws) ;
}

As before, add the flag FLG_APPMAN_FULLSCREEN to app. f | ags to take advantage of the larger screen on
the Series 3a.

Sharing method function code

All messages sent by system code to the command manager as the result of selecting amenu option or
using an accelerator (that is, thecom exi t method and any following methods added by a subclass) are
sent by acall to the utility functionhwser vConsend. The code for this utility function is effectively as
follows:

VO D hWser vConSend(| NT com d);

p_send3(w_ws->wserv.com com d, com d);

Note that the parameter comi d, which is the appropriate method number, is passed as an additional
parameter and is thus available to the method function. This can be used to advantage when two or more
methods have very similar method functions, as do the two command manager methods introduced in the
previous example. The command manager class definition could have been written as:

CLASS hel | ocm comman
command manager

{
ADD hcm hel |l o
ADD hcm bye=hel |l ocm_hcm hell o

}

so that both methods share the same method function. The code could then be written as:
METHOD VO D hell ocm _hcm hel | o(PR_HELLOCM *sel f, | NT com d)

{
if (com d==0O_HCM HELLO)
p_send3(w_ws->wserv.cli, O WN_SET, FALSE) ;
el se
p_send3(w_ws->wserv.cli, O WN_SET, TRUE) ;

OBJECT ORIENTED PROGRAMMING GUIDE

Clearly, thereis no great advantage in this particular case, since the two methods are so simple. Thisis
aggravated by the fact that the replacement code is written for clarity rather than compactness.
Neverthel ess, the technique can frequently be used to advantage in real applications.

Changing the text of an option

The options to set the message text in the previous example could be replaced by a single option that
toggles between the two messages. To be effective, the text of the option should also change, depending on
which message is currently visible.

Each time a pull-down menu is displayed, its content is reloaded from the resource file. The command
manager'scom menu method is called immediately before a pull-down menu is displayed, but after the
menu's text has been loaded.A command manager subclass may therefore replace this method to change the
text of one or moreitems.

Continuing from the previous (hello2) example, we can use a single method instead of the two methods
com hel | o and com bye. The class definition of HELLOCMthus becomes:

CLASS hel | ocm comman
conmand manager

{
REPLACE com nenu
ADD hcm hell o

}

The resource file needs to be changed to remove an accel erator and the menu item for the 'Say goodbye'
option. An additional string resourceis required to specify the alternative text for the option. The relevant
resources become:

RESOURCE WSERV_I NFO hel | o_accs
{

menbar _i d=hel | o_nenbar;

first_conrO_COM EXI T;

accel ={"' x', /* Exit */
"h'}; /* Hello/Bye */

}

RESOURCE MENU message_nenu
{

items =

{
MENU_| TEM

{
com i d=O_HCM HELLO;
mm_i temr" Say goodbye";

}

}
RESOURCE STRI NG say_hell o {str="Say hello";}

All other resources are unchanged.

In all cases where menu text isreplaced, the text that appearsin the MENU_I TEMresource must be the
longest text of all the possible alternatives. Thus, in this case, it isimportant that the text in the option
corresponding to the message number 0_HCM HELLOis"Say goodbye" and that the replacement resource
isthe shorter "Say hello". The reason is that the menu resource is loaded into memory as a sequence of
items of fixed length, determined by the size of the itemsin the resource. It is therefore possible to overwrite
an element with a shorter replacement, but an attempt to replace it with alonger element will overwrite part of
thefollowing item.

A suitable com _menu method function is asfollows:

5 COMMANDS AND COMMAND MENUS

#i ncl ude <varray. g>
METHOD VOI D hel | ocm com menu(PR_HELLOCM *sel f, I NT menu_num PR _VAROOT *array)
{UBYTE *p;
i f (menu_num==0)
;{f (p_send2(w_ws->wserv.cli, O WN_SENSE))
EJ:(UBYTE *)p_send3(array, O VA _PREC, 0);

hLoadResBuf (SAY_HELLO, p+2); /* pointer skips the byte count and
met hod number */

}
}
}
The method is passed the menu number (counting from zero for the leftmost menu in the menu bar) of the
pull-down menu that is about to appear and the handle of an OLIB variable array containing the data for

each of the optionsin that menu. Each element of thisarray consists of aleading length byte that indicates
the (fixed) length of afollowing MENU_I TEMstruct, defined in pulldown.g as:

typedef struct

UBYTE com.i d; /* command manager method nunmber */
TEXT m_txt[1]; /* option text, as a zero termnated string */
} MENU_I TEM

Thecom nmenu method testsif the relevant menu (in this case, the first menu, with menu number zero) is
about to appear. If so, it further tests whether the text needs to be changed, indicated by the client window's
i sbye property being set (that is, the window is displaying "Goodbye" and so the menu option should be
'Say hello'). The additional client window wn_sense method is described below.

Provided both conditions are met, the address of the appropriate array element (in this case the first - and
only - element, whose index is zero) is found by sending the array object avA_PREC message. Finally, the
replacement zero terminated text string is loaded from the resource file to overwrite the original text that
starts at atwo byte offset within the array element.

An additional client window method, wn_sense, is needed so that the command manager can determine the
client window's state. The client window class definition must become:

CLASS hel | obw bwi n
bordered client w ndow

{

REPLACE wn_i ni t
REPLACE wn_dr aw
REPLACE wn_set
REPLACE wn_sense
PROPERTY

{
UWORD i shye;

}
}

and a suitable method function could be:
METHOD UI NT hel | obw_wn_sense(PR_HELLOBW *sel f)

return(sel f->hell obw.isbye);

}

Thecom menu method may be used to replace the text of any number of menu optionsin any number of
menus. Any one call to the method will, of course, only replace the text of items in the one pull-down menu
indicated by the menu_numparameter.

OBJECT ORIENTED PROGRAMMING GUIDE

Disabling a menu option

Many applications may, from time to time, enter a state in which one or more command options do not
represent valid operations. A common exampleisfor a'Copy' option that copies a highlighted section of
datato aclipboard. This option is clearly inappropriate if none of the datais highlighted.

The recommended way of handling such a situation isto display an information message that explains why
the option is not valid. In the case of copying, for example, the built-in applications display a"Nothing to
copy" information message.

Oneway of implementing thisisto add avalidity check at the start of each of the relevant command
manager methods. Thisis adequate if only one command is affected, but if it appliesto anumber of options
this can lead to much duplicated code. A more efficient solution may be to subclassthecom accl _check
method.

Whenever amenu option is selected, either from a pull-down menu or by an accel erator keypress, the
command manager first receives a COM_ACCL_ CHECK message, passing the method number of the message
that corresponds to the selected command option. Only if thecom accl _check method function returns a
TRUE valueisthe command manager sent (viahWser vConSend) the message that executes the selected
command option.

Suppose an application hasacom copy method in itsMycomMcommand manager, used to copy a highlighted
region. A suitablecom accl _check method function would be of the form:

METHOD | NT mycom com accl _check(PR_MYCOM *sel f, | NT com d)
i f (com d==0_COM COPY)
(
if (!RangeHi ghlighted())
{

hl nf oPri nt (- NOTHI NG_TO_COPY) ;
return(FALSE);

}
}
return(TRUE);
}

wherethe RangeHi ghl i ght ed function is assumed to return TRUE only if arangeis highlighted (possibly
detecting this case by sending some form of SENSE message to the appropriate object). Note that

hi nf oPri nt ispassed anegative resourceid, indicating that the resource with id NOTHI NG_TO_COPY is
located in the system resource file (see the Resource Files chapter).

In the case of Copy it may be more efficient to perform the test within the com _copy method function, as
follows:

METHOD VO D nycom com copy(PR_MYCOM *sel f)
{
if (!CopyRangeTo Clip())
hl nf oPri nt (- NOTHI NG_TO_COPY) ;
}
where CopyRangeToCl i p isassumed to return TRUE only if a highlighted range has been copied to a

clipboard.

Which of these two methods to use will depend on the exact circumstancesin a particul ar application.

Changing the number of options in a menu

In some circumstances one or more commands options may be disabled for the greater part of the time. An
example of thisis the Spell check option of the built-in word processor. This option is not available unless
the Spell-checker application has been purchased and installed on the machine. It would be inappropriate to
handle such an option in the way described in the previous section. A better way isto display the optionin
acommand menu only if the option may validly be selected. Thisinvolves subclassing both thecom menu
and com accl _check methods.

5 COMMANDS AND COMMAND MENUS

The content of a pull-down menu isloaded from the application's resource file into an allocated memory cell
whose size is determined by the size of the resource. It is therefore not an easy task to add items
dynamically, once the resource has been loaded. It is, however, quite simple to remove items.

The recommended technique for varying the number of optionsin amenu isthusto include an entry for
each such optionin the appropriate MENU resource, and provide it with an accelerator as normal. Theitem
may then be removed, if necessary, from the pull-down menu by replacing the com menu method. Selection
of the option by its accelerator (which does not involve the pull-down menu) must also be disabled, if
necessary, by asuitable replacementcom accl _check method.

Suppose that an application's 'Optional’ command option, with a Psion-O accelerator, isthe third item in the
fifth menu of an application and is executed by acom opt i onal method in aMvcoMsubclass of the
command manager. The WSERV_| NFO resource and the appropriate MENU resource would contain the
following:

RESOURCE WSERV_| NFO ny_accs

{
accel ={. ..
'o', /* Optional */
b
}
RESOURCE MENU fifth_nenu
{
itens =
{
i\/iENU_I TEM
{
com i d=0O_COM _OPTI ONAL;
m_item="Optional";
b
b
}

Thecom menu andcom accl _check methodswould need to be of the form:
METHOD VO D nycom com nmenu(PR_MYCOM *sel f, | NT menu_num PR_VAROOT *array)
{

if (menu_num==4) /* in fifth menu */

{
if (!Optional Commandl sValid())

p_send3(array, O VA DELETE, 2); /* delete third item*/
}

}
METHOD | NT mycom com accl _check(PR_MYCOM *sel f, | NT com d)

{
if (com d==0_COM OPTI ONAL)

(

if (!Optional ConmandlsValid())
return(FALSE) ;

}

return(TRUE);
}

Displaying a status window

The command manager is sent aCcoM_STATW N message when the application receives a Control-Menu
keypress. The supplied com st at wi n method does nothing, so the default action of an applicationisto
ignore this keypress. An application that wishes to respond to the Control-Menu keypress by altering the
state of its status window should subclass this method.

A Series 3 application may record (generally in an element of property) the current state of visibility of its
status window and toggle its visibility by appropriate callsto either wsEnabl e or wsDi sabl e. Before

OBJECT ORIENTED PROGRAMMING GUIDE

changing the status window it should adjust the size of its client window display to fill the space that will
not be occupied by the status window.

A Series 3a application has the option of switching between alarge, small or no statuswindow. The
following codeillustrates how the com st at wi n method may be used to cycle around the three possible
states. Note that this code assumes that the client window has awn_change_wi dt h method that adjusts
the width of the window, given the (signed) amount by which the width needs to be changed. Possible code
for such amethod is given in the Windows chapter of this manual.

METHOD VO D wpcrman_com st at wi n(PR_WPCMAN *sel f)
{
I NT wi nType, del t a;
P_EXTENT ol dExt ent ;
P_EXTENT newExt ent ;

wi nType=wl nqui r eSt at usW ndow(- 1, &ol dExt ent) ;
if (wi nType==W STATUS_W NDOW _OFF)

wi nType=W STATUS_W NDOW BI G;
else if (wi nType==W STATUS_W NDOW SMALL)

wi nType=W _STATUS_W NDOW _OFF;
el se

wi nType=W STATUS_W NDOW SMALL;
wl nqui r eSt at usW ndow(wi nType, &hewExt ent) ;
del t a=(ol dExt ent. wi dt h- newExt ent. wi dt h) ;
p_send3(w_ws->wserv.cli, O WN_CHANGE_W DTH, del t a) ;
wSt at usW ndow(wi nType) ;
}

Application-specific initialisation

The command manager'scom i ni t method isintended to be replaced in applications that need some form
of application-specific command manager initialisation. Many applications will not need to replace this
method. Application-specific initialisation may be necessary, for example, to create and initialise component
objects used in the execution of one or more command options.

Note that the command manager is created and initialised (by being sent aCcom | NI T message) immediately
before the window server object is sent aws_DYN_I NI T message. Thisisimportant because it means that at
thetimethecom i ni t method function is executed, the client window does not yet exist (since an
application creates and initialisesits client window inthews_dyn_i ni t method). Thecom i ni t method
may not therefore make any direct reference to the client window or any components that it may create.

Replacing a menu bar

An application may, in some circumstances, wish to make a permanent or temporary replacement of its menu
bar. An exampleisan application that can switch between, say, agraphic and atext display and requires a
different set of command menu options for each view. Alternatively, an application may operate under a
number of aliases (see the Aliasing applicationssection of the Communicating with the System Screen
chapter of the Series 3 Programming Guide) and require a different set of command menu options for each
alias.

Theinitial menu bar of an applicationis set up by system code, during theinitialisation of the window server
object, immediately before the creation and initialisation of the command manager. The datafor theinitial
menu bar is read from the WSERV_I NFO resource that must be the first item of the application's resourcefile.
This struct specifiesthe resource id of the MENU_BAR resource that contains the menu bar text, the
accelerators for each option and the command manager method number of the method to be associated with
the first of these accelerators. The menu bar resource, in turn, contains the resource ids of the MENU
resources that contain the pull-down menus associated with the menu bar items.

For each alternative menu, the application resource file must contain a separate WSERV_| NFO resource, its
associated MENU_BAR resource and any additional MENU resources (two or more menu bars may share a
single MENU resource that is common to them). These additional resources may appear at any position, and
in any order, in the application's resourcefile.

5 COMMANDS AND COMMAND MENUS

To change the menu bar, an application should send the window server active object aws_SET_MENUBAR
message, passing the resourceid of the new WSERV_I NFO resource. If, for example, an application has an
alternate menu defined in itsresourcefile as:

RESOURCE WSERV_I| NFO al ternate_accs
{

it would change its menu bar by means of code of the form:
VOl D *pA dMenBar ;
pO dMenBar = p_send3(w_ws, O WS_SET_MENBAR, ALTERNATE_ACCS) ;

The method returns a pointer to an allocated memory cell that contains the data for the original menu bar. If
thisis not to be restored the application should free this memory by calling, for example:

p_free(pO dMenBar) ;

If, however, the application isintending to restore the original menu at some future time it should preserve
this pointer. The original menu bar is restored by the message:

p_send3(w_ws, O W§_RESET_MENUBAR, pO dMenBar) ;

Neither of these two messages cause the new or the restored menu bar to be displayed. The appropriate
menu will be made visible as normal when the Menu key is next pressed.

A permanent replacement of amenu bar, say for an aliased application, may be made at any time during
application-specific initialisation. Suitable locations for the code ar either the command manager'scom i ni t
method or the window server object'sws_dyn_i ni t method.

Note that any alias information text that was passed to the application in its start-up command lineis
pointed to by atext pointer in the HW MVAN application manager's property, accessed through thew_am
magic static by w_am- >hwi mman. al i asi nf o, which must be declared as:

GLREF_D PR_HW MVAN *w_am

Submenus

An application may make atemporary replacement of its menu bar to implement a submenu by sending the
window server object aws_DO_SUBMENU message. An example of this, taken from the Series 3 Spreadsheet

application, isillustrated below.
Print FPrint range

File Edit Wiew Search Range | Special j

Recalc 2

Data 20 =F
Options ¥ FPrint setup 2
Gr-aph

Jump to page =27

Print.

The method will normally be called from the command manager method corresponding to a main menu
option. Asfor thews_set _menbar method, ws_do_subnenu requires the resource id of aWSERV_I NFO
resource. Note that, asillustrated above, commands in a submenu may have names and/or accel erators that
duplicate those appearing in the main menu. One use of submenusistherefore to provide a means of
exceeding an application's normal limit on the number of its commands.

A typical call would be of the form:
p_send3(w_ws, O W5_DO SUBMENU, SUBMENU_ACCS) ;

and causes the submenu to become visible, ready for selecting one of its commands. Note that, unlike
ws_set _nmenubar , this method does not return a pointer. The current main menu is restored automatically
when the submenu menu bar ceases to be visible.

Shutdown messages

The System Screen may send an application a Shutdown message at any time, unless the application has
explicitly elected not to receive such messages. It may do this by adding 4000 to its type number in its shell

5-11

OBJECT ORIENTED PROGRAMMING GUIDE

datafile (see Application type numbersin the Communicating With the System Screen chapter of the Series
3 Programming Guide).

An HWIM application receives a Shutdown request from the System Screen in the form of anormal

COM_EXI T message to its command manager. It should handle thisin exactly the same way as when the user
explicitly selects the application's Exit option (the application actually has no means of distinguishing
between the two cases). The default com exi t method supplied by the COMVAN classis quite adequate for
an application that is not file-based. See the File-based Applicationschapter for the required behaviour of
com exi t when the application maintains an open file.

An application may indicate that it is temporarily unable to accept a Shutdown message by setting the

Dat Locked reserved static to be non-zero. Thiswill generally only be relevant for afile-based application: a
typical caseiswhile an application is performing an extended operation that must run to completion, such as
saving afile. The application must ensure that it clearsDat Locked again, as soon as possible.

CHAPTER 6

WINDOWS

An HWIM window object represents a rectangul ar region on the screen, in which data may be displayed.
The concept of awindow is discussed in the Introduction and Windows chapters of the Window Server
Reference manual. The following description of the basic HWIM window classes assumes a reasonable
familiarity with the content of these chapters. In addition, drawing to awindow requires a knowledge of the
Graphics Output chapter of the Window Server Reference manual.

In general, an HWIM application uses a number of different windows. Some windows may exist for the
entire lifetime of the application, for example, an application's main display window. Others may exist for a
short time, such as the windows used to display a menu bar, a pull-down menu or adialog box.

AnHWIM application is expected to have one particular window, designated the client window, that
(generally) existsfor the lifetime of the application and provides the main view of the application's data. This
window should be created as part of the application'sinitialisation, in the WSERV window server active
object'sws_dyn_i ni t method, with its handle being writtento thewser v. cl i property element. See, for
example, the creation of abordered client window in the "Hello World" example application.

All HWIM windows subclass the W N class, which isthus the ultimate superclass of all windows. The
window classes supplied by HWIM are abstract classes and will normally need to be subclassed in order to
create useful window objects.

In contrast with the mechanisns supplied for the handling of command menus and dial ogs, the HWIM
library providesrelatively few 'solutions' for the display of datain awindow (but see the Edit Windows
chapter). For example, an application can normally simply use the supplied dialog box class or, at most,
replace one or two methods. It will, however, usually have to subclass the window classesto provide a
variety of application-specific mechanisms. This chapter therefore describes the supplied window classesin
more detail than is supplied for, say, the dialog box class.

The supplied classes, listed below, are described in the following sections of this chapter. The descriptions
of the methods of each of these classes are followed by explanations of afew key mechanisms.

W N the ultimate window superclass.
BW N asubclass of W N that draws a standard border around the window.

LODGER a pseudo-window that subclassesW N. Such awindow is assumed to occupy arectangular
region within another window. The enclosing window (referred to as the landlord) will
normally delegate all processing for that rectangle to the lodger.

The relationships between these classesisillustrated in the following class diagram.

P I

S owin S bwin

OBJECT ORIENTED PROGRAMMING GUIDE

In addition to the methods and property in the application's code and data segments, a window has an
associated data structure in the window server's resources, created by acall towCr eat eW ndow when an
instance of W Nisitself created. The window server provides a set of functions that operate on such data
structures, each data structure being uniquely identified by awindow id returned by wCr eat eW ndow.

Since auniquely identifiable data structure with a set of functions that operate on it is effectively an object,
the window server resources associated with awindow can be considered as a component object. The
existence of the window server resources is thusindicated in the above class diagram by the 'using'
relationship between w N and anotional wsw N (Window Server WINdow) class.

The WIN class

win

flags
id

destroy
wn_cal c_posi ti
on

wn_connect
wn_dodr aw
wn_enphasi se
wn_key
wn_posi tion
wn_redraw
wn_sense_hel p
wn_vi si bl e

Thew N abstract class subclasses ROOT to form the superclass for all windowsin HWIM applications.

Class definition
Defined in sub-category file hwim.cl (generated header file hwim.g).

CLASS win root
The wi ndow obj ect supercl ass
REPLACE destroy Cl ose server wi ndow then supersend destroy
ADD wn_r edr aw Called in reponse to WM REDRAW
ADD wn_dodr aw Same effect as redraw but called by application
ADD wn_connect Connect the wi ndow to wi ndow server data (wswi n)
ADD wn_position Cal cul ate position and re-position
ADD wn_cal c_position Cal cul ate position
ADD wn_key=p_fal se For processing WM KEY from server
ADD wn_vi si bl e Alters visibility state of w ndow
ADD wn_enphasi se W ndow i s highlighted in some way
ADD wn_sense_hel p G ve start id for help
DEFER wn_set Set sone wi ndow obj ect property fields
DEFER wn_sense Sense sone wi ndow obj ect property fields
DEFER wn_dr aw Draw to existing graphics context - usually
subcl assed
DEFER wn_i ni t Specific initialisation for a type of w ndow

6 WINDOWS

CONSTANTS

{

CONTROL_ HEI GHT
PR_BW N_CUSHI ON
PR_BW N_CORNER_4
PR_BW N_SHADOW 1
PR_BW N_SHADOW 2
PR_W N_EMPHASI SED
PR_BW N_OPEN
PR_BW N_CORNER_1

10 pi xel height of a standard control
ox1 mat ches W BORD_CUSHI ON

0x2 mat ches W BORD_CORNER 4

0x4 mat ches W BORD_SHADOW S

0x8 mat ches W BORD_SHADOW D

0x10 mat ches W BORD_SHADOW ON
0x20 mat ches W BORD_OPEN
0x40 mat ches W BORD_CORNER_1

! Gap of four bits, reserved for the arrow bits

PR_W N_I NI TI ALI SED 0x800 W ndow conpletely initialised
PR_W N_FORCE_RI GHT 0x1000
PR_W N_FORCE_LEFT 0x2000
PR_W N_FORCE_BOTTOM 0x4000
PR_W N_FORCE_TOP 0x8000
PR_W N_FORCE_FLAGS 0xf 000
I N_W N_EMPHASI SED (PR_W N_EMPHASI SED)
W/_I NVI SI BLE 0
WV/_VI SI BLE 1
WV_I NI TINVI S 2
W/_INITVI S 3
WN_KEY_NO_CHANGE 0
WN_KEY_CHANGED 3
WN_KEY_CHANGED_DEFER 7
WN_KEY_CANCELLED (-1)
WN_KEY_ABSORB_ON (-2)
ERROR_RI D_OFFSET 512
}
PROPERTY
{
UWORD i d; wi ndow server w ndow id
UWORD f I ags; PR_W N EMPHASI SED et c.
}
}
Property
win.id the window id, returned from a call towCr eat eW ndow, and used by the
window server to identify the window
win. flags acollection of flags recording the state of the window, as described below
Window flags

The content of wi n. f | ags may be any legal combination of the following flags:

PR_W N_EMPHASI SED

PR_W N_I NI TI ALI SED

PR_W N_FORCE_RI GHT

PR_W N_FORCE_LEFT

PR W N_FORCE_BOTTOM

PR_W N_FORCE_TOP

TRUE if the window isto be drawn in a highlighted state, theflagis
set or cleared by thewn_enphasi se method

TRUE if some significant aspect of the window initialisation is
successfully completed, normally implying some change in action
during subsequent destruction of the window. Thisis currently used
by only the DLGBOX subclass

the window isto be positioned at the right hand edge of the screen.
Thisflag is mutually exclusive withPR_W N_FORCE_LEFT

the window isto be positioned at the left hand edge of the screen.
Thisflag is mutually exclusive withPR_W N_FORCE_RI GHT

the window is to be positioned at the bottom edge of the screen. This
flag is mutually exclusive withPR_W N_FORCE_TOP

the window isto be positioned at the top edge of the screen. This
flag is mutually exclusive withPR_W N_FORCE_BOTTOM

Additional flag bits are used by the BW N subclass.

OBJECT ORIENTED PROGRAMMING GUIDE

WIN methods

WN_CONNECT Create the window's window server data
VO D wn_connect (PR_.W N *par, UINT fields, WWNDATA *wi ndata);

Create the window server data structure for the window by calling the window server function
wCr eat eW ndow, writing thereturned id towi n. i d, asindicated by the following code:

METHOD VO D wi n_wn_connect (PR_WN *self, PR_.WN *par, U NT fields, WW NDATA
*wdat a)

{
sel f->wi n.i d=wCr eat eW ndow((par ?par->wi n.id:0),fields, wlata, (UMNORD) sel f);

}

The parameterswi ndat a andfi el ds are asdescribed for wCr eat eW ndow in the Windows chapter of the
Window Server Reference manual. The value of par should be NULL if the window isto be atop-level
window, otherwiseit should be the handle of the parent window in the window tree. Thevalue of sel f is
passed towCr eat eW ndow for use by the window server as a handle to identify the window, for example,
when the window must be sent aredraw message. The window server usessel f in much the same way that
window method functionsusewi n. i d.

In general, HWIM windows are created with thew W N_BACK_BI TMAP bit inwi ndat a- >f | ags cleared, so
that they will be redrawn by the window server Wy REDRAWMechanism, which causes the window to be sent
aWN_REDRAWMESSsage.

Assuming that the window server functionwdi sabl eLeaves has not been called, any failure will result in
p_l eave being called.

This method must be executed during the initialisation of any window.

Application code will frequently replace this method to customise the window's features and/or to create
child windows.

DESTROY Destroy

VO D destroy(VO D);

Destroy the window, including its window server data structure if this has previously been successfully
created. An application will not normally send this message to its client window (or to any permanent
component of the client window).

The method ensures that no window server event can be directed to the window after its destruction
sequenceisinitiated, and callswCl oseW ndowTr ee, passingwi n. i d, to free the window's window server
data.

Finally, the method supersends the DESTROY message, to destroy the window's client-side resources
(including automated destruction of any component objects).

WN_REDRAW System-initiated redraw

VO D wn_r edr aw(P_RECT *prect);

This method isintended to be called by system code to redraw the window, following receipt by WSERV of a
window server event of type WM _REDRAW An application will not normally replace this method, nor will it
explicitly send aWN_REDRAWMeSsage to any of its windows.

The operation of the method isasillustrated in the following code:

VO D win_wn_redraw(PR WN *self, P_RECT *prect)
{
wBegi nRedr awGCO(sel f->wi n.id);
p_send2(sel f, O WN_DRAW ;
wWEndRedr aw() ;

6 WINDOWS

Note that the whole window is redrawn, the rectangle coordinates pointed to by pr ect being ignored. A
window that selectively redraws only the area specified by pr ect should replace this method.

WN_DODRAW Application-initiated redraw
VOI D wn_dodr aw(VOl D) ;

This method isintended to be called by the application itself, for example, following a change in the data
being displayed. An application will not normally subclass this method.
The operation isillustrated in the following code:
VO D wi n_wn_dodraw(PR_W N *sel f)
{
wVal i dat eW n(sel f->wi n.id);
gCreat eTenpGCO(sel f->win.id);
p_send2(sel f, O WN_DRAW ;

gFreeTenpGC() ;
wrl ush();

The use of this method is equivalent to making a call to the window server functionwl nval i dat eW n,
except that the redrawing is performed immediately, without having to wait for aredraw event to arrive from
the window server.

WN_VISIBLE Set visibility
I NT wn_visible(U NT flag);

Set the visibility of the window, and any descendant windows, according to thevalue of f I ag. An
application will not normally subclass this method.

During initialisation of awindow, possible values of flag are:
W/_INTVIS which callswi ni ti al i seW ndowTr ee(wi n. i d)

VNI NI T NVI which callswvakel nvi si bl e(wi n. i d) and then
S winitialiseWndowTree(wi n.id).

For an existing initialised window, this method may be called with flag set to either Wv_vi SI BLE or
WV_I NVI SI BLE which respectively call wwakeVi si bl e(wi n. i d) orwvakel nvi si bl e(win.id).

This method will normally be called during theinitialisation of awindow. See also the HWIM utility function
hinitVis.

WN_EMPHASISE Set window highlight

VO D wn_enphasi se(Ul NT fl ag);

Set or clear the PR_W N_EMPHASI SED bit inwi n. f | ags, depending on whether flag iSTRUE or FALSE. Then
cal wi nval i dat eW n(wi n. i d) sothat thewindow will eventually receive a\WN_REDRAWMeESSage.

Windows generally draw themselves differently in some way, according to whether or not they are
emphasised.

This method is not suitable for usein quality applications. It is expected that a subclass will always replace
this method to provide specific and more effective redraw logic (see, for example the BW N subclass).

WN_SENSE_HELP Sense start id for help
I NT wn_sense_hel p(VO D) ;
Sense the resourceid for the application's current Help index.

Returnsthe value of w_ws- >wser v. hel p_i ndex_i d or, if thisvalueis zero, the (negative) system resource
id- SYS_HELP_ON_HELP.

OBJECT ORIENTED PROGRAMMING GUIDE

This method can be subclassed to facilitate context -sensitive Hel p.

WN_CALC POSITION Calculate a window position
VOI D wn_cal c_position(INT flags, P_EXTENT *pext);

Calculate, and writetopext - >t | . x and pext - >t | . y, the required screen coordinates of the top |eft corner
of the window of widthpext - >wi dt h and height pext - >hei ght to placeit on the screen in the position
specified by f | ags. The calculation assumes that the window includes a blank 'cushion’, one pixel wide, on
all four sides.

The value of flags may contain any ORed combination of:

either PR_W N_FORCE_RI GHT or PR_W N_FORCE_LEFT, with obvious meanings. In either case the
window is positioned so that the single pixel cushion at the side of the window that touches the
edge of the screenisnot visible. If neither flag is present the window is centred horizontally

either PR_W N_FORCE_TOP or PR_W N_FORCE_BOTTOM, again with obvious meanings. In either
case the window is positioned so that the single pixel cushion at the side of the window that
touches the edge of the screen isnot visible. If neither flag is present the window is centred
verticaly

An application will not normally need to either replace or make explicit callsto this method.

WN_POSITION Set window position

VO D wn_position(INT flags);
Position the window according to the value of flags, which may contain any ORed combination of:

either PR_W N_FORCE_RI GHT or PR_W N_FORCE_LEFT, with obvious meanings. In either case the
window is positioned so that the single pixel cushion at the side of the window that touches the
edge of the screenisnot visible. If neither flag is present the window is centred horizontally

either PR_W N_FORCE_TOP or PR_W N_FORCE_BOTTOM, again with obvious meanings. In either
case the window is positioned so that the single pixel cushion at the side of the window that
touches the edge of the screen is not visible. If neither flag is present the window is centred
vertically

The method sends aWN_CALC_POSI TI ON message to determine the required position before moving the
window by means of acall towSet W ndow.

If used, this method will normally be called during theinitialisation of awindow, but must not be called
before the window has processed a WN_CONNECT message.

An application will not normally need to replace this method

WN_KEY Process a keypress
I NT wn_key(I NT keycode, |NT nodifiers);

Process a keypress, where keycode is the code of the key pressed and modifiers contains a set of flags
indicatinf which modifier keys (SHIFT, CTRL etc.) were held down when the key was pressed. The possible
values of keycode and modifiers are described in the Events chapter of the Window Server Reference
manual.

Depending on the type of keypress and the current state of the application, the WN_KEY message may be
sent to awindow (normally the client window or a dialog) by system code.

The supplied method simply returns zero (WN_KEY_NO_CHANGE).

A subclasswill, in general, replace this method. In many casesthewn_key method of awindow may
delegate the processing by sending WN_KEY messages to one or more other windows.

6 WINDOWS

Deferred WIN methods

A window will generally replace one or more of the methods described below. Note that thereis no
requirement for any particular subclass to replace all these methods.

WN_INIT Initialise
VODw_init(...);
Provide class-specific initialisation. For most windows thiswill include a call of the form;

p_send5(sel f, O WN_CONNECT, parent, ws_fl ags, &ws_dat a) ;

The number and types of parametersto thewn_i ni t method depend on the class. However, once specified
for aparticular class, further subclasses will normally follow the same parameter structure.

Note that a simple window may not need to supply this method, since all essential initialisation may be
performed by thewn_connect andwn_vi si bl e methods.

WN_SET Set property
VO D wn_set(...);
Set one or more property fields.

The number and types of parametersto thewn_set method depend on the class. However, once specified
for aparticular class, further subclasses will normally follow the same parameter structure.

WN_SENSE Sense property
VO D wn_sense(...);
Sense one or more property fields.

The number and types of parametersto thewn_sense method depend on the class. However, once
specified for aparticular class, further subclasses will normally follow the same parameter structure.

WN_DRAW Draw to existing GC
VOI D wn_dr aw(VOI D) ;

Supply class-specific drawing for the whole area of the window, called from thewn_r edr aw and wn_dodr aw
methods. Most application subclasses will need to supply this method.

The method assumes that an appropriate graphics context exists, so the caller is responsible for supplying a
graphics context. Note, however that this method is called from thewn_r edr aw and wn_dodr aw methods,
both of which create a basic graphics context around the sending of a \WN_DRAWMessage.

The BWIN bordered window class

Wi n bwi n

OBJECT ORIENTED PROGRAMMING GUIDE

flags

id

destroy wn_dr aw
wn_cal c_positi wn_enphasi se

on
wn_connect
wn_dodr aw
wh—eAphasi-se
wn_key
wn_position
wn_redraw
wn_sense_hel p
wn_vi si bl e

The BW N abstract classisthe superclass for all bordered windows.

Class definition

Defined in sub-category file bwin.cl (generated header file bwin.g).

CLASS bwi n Wi n

Al'l wi ndows that have a border

{

REPLACE wn_dr aw
REPLACE wn_enphasi se
CONSTANTS

ZIZIZ

BW N_CUSHI ON_X
BW N_CUSHI ON_Y
BW N_SHADOW 1_HEI GHT
BW N_SHADOW 1_W DTH
BW N_SHADOW 2_HEI GHT
BW N_SHADOW 2_\W DTH
}

}

Property
None.

use this

Redr aw bor der
Updat e border

PR_BW N_CORNER_4
PR_BW N_SHADOW 1
PR_BW N_SHADOW 2
PR_BW N_CUSHI ON
PR_BW N_OPEN

1

NN R R R

BWIN methods

WN_DRAW
VOl D wn_dr aw(VOI D) ;
Draw the window's border by calling

gBorder (sel f->win.flags);

Draw border

Thesignificant flag bitsare PR_BW N_CUSHI ON to PR_BW N_CORNER_1 inclusive, together with the
following four bits (0x80 to 0x400 inclusive) used to indicate the corner arrows. These bits are equivalent to
the window server flagsw BORD_CUSHI ON t0o W BORD_CORNER_1 and W BORD_TOP_ON to

W BORD_BOT_OFF, whose effects are explained in the description of gBor der and gBor der Rect inthe
Graphics Output chapter of the Window Server Reference manual.

An application-specific subclass will normally replace this method to provide drawing of the window's

content, including theline:

p_supersend2(sel f, O WN_DRAW ;

6-8

6 WINDOWS

to draw the border.

WN_EMPHASISE Update border

VO D wn_enphasi se(Ul NT fl ag);

If f1 ag ISFALSE, clear the PR_W N_EMPHASI SED flag (equivalent to the window server
W BORD_SHADOW ON flag) inwi n. f | ags, otherwise set it.

Then redraw the border asindicated in the following code:
gCreat eTenpGCO(sel f->win.id);
gBorder (sel f->win.fl ags);

gFreeTemGC;

The shadow of a shadowed bordered window is only visible when the window is emphasised.

The LODGER class

wi n | odger
flags | andl ord
id of f set
wi dt h

dest+oy destroy
wn_cal c_positi | g_draw
on I g_self_check
wn_connect |l g_set_id_pos
wn_dodr aw wn_init
wn_enphasi se wn_vi si bl e
wn_key
wn_position
wn_redraw
wn_sense_hel p

o

The LODGER class defines awindow that does not have its own independent window server data structure,
and therefore does not have an independent window server id. A lodger window is defined to be any
window that subclasses L ODGER.

A lodger window occupies a rectangular region within another window, referred to as the lodger window's
landlord, and shares the window id of the landlord window. In other respects alodger window has broadly
similar behaviour to anormal window, supporting asimilar set of drawing and key processing messages. A
lodger window can be considered to take over the responsibility for drawing the content of arectangular
region of the landlord window.

A significant difference between the two types of window isthat drawing in alodger window is not clipped
by the boundaries of the lodger window itself. Drawing will only be clipped by the landlord window
rectangle; as a consequence alodger window has a duty never to draw outside its bounding rectangle.

The most common single use for alodger window is as a component control within adialog box.

Since alodger window does not have an independent window server data structure, it ismore efficientin
terms of memory usage. This can be significant in the case of a complex compound window (adialog box, for
example, can easily need ten or more component sub-windows). An additional advantageisthat such a
compound window will scroll more smoothly - the scroll mechanism operates on only the single 'real’
window and does not require messages to be sent to any of the component lodger windows (except for
those that have freshly exposed regionsto draw).

OBJECT ORIENTED PROGRAMMING GUIDE

Class definition
Defined in sub-category file lodger.cl (generated header file lodger.g).

CLASS | odger win
Lodger wi ndow

{

REPLACE wn_init Set up |l andlord
REPLACE destroy=root_destroy

REPLACE wn_vi si bl e

ADD | g_set_id_pos Set window id after dynamic initialisation
ADD | g_draw Tenp GC and call wn_draw
ADD | g_sel f_check=p_true Returns TRUE if contents are |egal
DEFER | g_sense_wi dth For dialogs to set their sizes
DEFER | g_updat e For fnselwn and fnedit
CONSTANTS
{
LG_CHECK_OK 1 Lodger self checked o.k., no change
LG _CHECK_FAI LED 0 Lodger failed self check, no change
LG CHECK_FAI LED CHANGED (-1) Lodger failed self check, changed
LG_CHECK_OK_CHANGED (-2) Lodger self checked ok., changed
}
PROPERTY
P_POI NT offset; of fset into | andlord w ndow
UWORD wi dt h; wi dth available to control
PR_WN *| andl ord; owner wi ndow
}
}
Property
| odger . of f set the pixel coordinates of the top left corner of the lodger window with
respect to the top left corner of the landlord window
| odger. wi dth the width, in pixels, of the area available to the lodger window
| odger. | andl ord the handle of the window's landlord window, assumed to be (a subclass of)

W N. The lodger window has access to the window server id of the 'real’
window (thelandlord) vial odger. | andl ord->win.id

A lodger window's property does not record the height of the lodger window. Thisis suitable when alodger
window isacomponent of adialog box since, in this case, it always has afixed height of CONTROL_HEI GHT
pixels.

LODGER methods

WN_INIT Initialise

VO D wn_init(U NT *par, PR WN *landl ord);

Initialise the lodger window by copying the value of | andl or d, which should be the handle of the owning
landlord window, intol odger . | andl or d.

The method ignores the value of par , whichis specified for use by subclassers.

DESTROY Destroy
VO D destroy(VO D);

Destroy only the client-side resources of the lodger window, together with automatic destruction of any
components.

Callsthe ROOT dest r oy method directly, to avoid calling the dest r oy method at the w N level, which might
free the landlord's window server data structure.

6 WINDOWS

WN_VISIBLE Set visibility
VOl D wn_vi si bl e(Ul NT fl ag);

Make the lodger window invisibleif f | ag iSFALSE, otherwise make the lodger window visible. (Note that, in
contrast to the W N superclass, only two flag values are supported.)

If the lodger window is being made visible, the method copies the landlord window's window server id into
wi n. i d and sends an LG_DRAWmMessage to draw the lodger window's contents.

If the lodger window is being made invisible, wi n. i d isset to zero and the method creates atemporary
graphics context, callsgCl r Rect to clear the areain the landlord window that is occupied by the lodger
window and then frees the temporary graphics context.

A non-zerovalueof wi n. i d thusindicates that the window is visible and thistest is used, for example, by
thel g_dr aw method. Settingwi n. i d to be acopy of thevalueinl odger. | andl ord->wi n.idisan
implementation decision that simplifies access to the window server id of the 'real’ window.

LG_SET _ID_POS Set id, position and width
VO D I g_set_id pos(INT id, P_PO NT *pos, U NT width);
Setwi n. i dtothevalueofi d, copy *pos intol odger. of f set and setl odger . wi dt h towi dt h.

A typical call to this method will be from adialog box after all the items have been loaded and the dialog box
has been set to the required width to display all itsitems.

LG_DRAW Create GC and draw
VO D | g_draw(VO D) ;
If wi n. i d isnon-zero, indicating that the window isin the visible state, draw the window content:

gCreat eTenpGCO(sel f->win.id);

p_send2(sel f, O WN_DRAW ;

gFreeTenmpGC() ;

Otherwise do nothing.

LG SELF CHECK Check content is valid

INT I g_self_check(INT item |INT can_defer);

Perform acheck that any property containsvalid data. A numeric editor may, for example, check that its
current value is within its allowed upper and lower bounds. The supplied method just returns
LG_CHECK_OK.

Deferred LODGER methods

These methods are intended to be replaced by classes that are used as components of a dialog box.

LG _SENSE WIDTH Sense required width
INT |1 g_sense_wi dt h(VO D) ;
This method is expected to return the width, in pixels, required to draw the lodger window contents.

An object will only receive this message when it is acomponent of adialog box (see the DLGBOX
dl _set _si ze method, described in the Dialog Boxes chapter).

Some system-supplied subclasses assume that this method is called only oncein the lifetime of an instance.

OBJECT ORIENTED PROGRAMMING GUIDE

LG_UPDATE Update file name

VO D | g_updat e(TEXT *pack, |NT derr);

This method is defined for the FNSELWN and FNEDI T dialog box component classes. See the descriptions of
these classes for an explanation of the method.

The draw/redraw mechanism

This section iswritten under the assumption that a window has been created without a back-up bitmap. An
HWIM application does not normally create backed-up windows and will therefore have to handle redraw
events. The main advantages that this confers on an application is that drawing to such awindow is faster
and much less memory is used for each window. See the Windows and Redrawing sections of the
Introduction chapter of the Window Server Reference manual for the background to drawing and redrawing
the content of awindow.

All or part of the content of awindow may have to be drawn for one of the following basic reasons:
the application's displayed data has changed

all or part of the window has been exposed, for example, by the disappearance of an overlying dialog, or
by the application being brought to the foreground.

In both cases the drawing is ultimately handled by the window'swn_dr aw method, but the mechanism by
which thisisinvoked differsin the two cases.

Thefirst of these generally results from some operation within the application itself, such as a keypress or
the execution of acommand. Normally the application will be aware that such a change has taken place and
can explicitly initiate the drawing. Most applications can do so by sending the window a\WN_DODRAW
message. This creates atemporary graphics context with default properties, sends aWN_DRAWMessage and
then destroys the temporary graphics context. The graphics context may be modified, if necessary, in the
window'swn_dr aw method.

The second case may occur at any time, without the application being aware of any particular need to do
any redrawing. The window server processwill, however, send the aplication a\WWM_REDRAWi nter-process
message, indicating that a particular area of a specific window needsto be redrawn. Thisis processed by the
application's window server object which then sends a\WN_REDRAWMessage to the specified window. Asfor
thewn_dodr aw method, atemporary graphics context is created around a \WN_DRAWMessage, which may be
processed exactly asin the previous case.

At thelevel of thewn_dr aw method, a window can not (and does not need to) distinguish between the two
cases. Infact, asan alternative to sending the window a WN_DODRAWMessage when its data has changed,
the application could simply invalidate the window (by callingwi nval i dat eW n). System code will ensure
that the window eventually receives a\WN_REDRAWMeSsage. |n many cases this may be simpler from the
point of view of coding, but is generally less efficient. It may lead to poor responsiveness, particularly in
applications that make rapid changes to their data.

Resizing a window

The following suggestion for awn_r esi ze method illustrates a simple way to change the position and size
of awindow without changing any other attribute:

METHOD VO D nywi n_wn_resi ze(PR_.MYW N *sel f, P_EXTENT *pext)

{
W W NDATA wd;

wd. ext ent =* pext ;
wSet W ndow(sel f->wi n.id, WW N_EXTENT, &) ;
}

S3/S3a client windows generally do not change size once they have been created and made visible. The
main exception is a change in width corresponding to a changein the state of any permanent status window.
Thus acommon requirement is to change the width, without changing the position or height, asin the
following examplefor apossiblewn_change_wi dt h method:

6-12

6 WINDOWS

METHOD VOI D nywi n_wn_change_wi dt h(PR_MYW N *sel f, | NT delta)
{
W W NDATA wd;

wl nqui reW n(sel f->win.id, &wu);

wd. ext ent . wi dt h+=del t a;

wSet W ndow(sel f->wi n.id, WW N_EXTENT, &) ;
}

Window emphasis

Emphasisis used to indicate which of several windows isthe one with which the user is currently
interacting.

System code will send the application's client window aWN_EMPHASI SE message to turn emphasis on or off;
for example, when adialog appears or disappears. Application code is not normally expected to send
WN_EMPHASI SE messages itself, except under the circumstances described below.

A window will usually respond to aWN_EMPHASI SE message by changing its appearance in someway. The
normal techniqueisto set or clear, as appropriate, the PR_W N_EMPHASI SED flag in the window's

wi n. f 1 ags property and then trigger aredraw, either by callingw nval i dat ew n or by sending itself a
WN_DODRAWMessage. I n either case the window'swn_dr aw method will subsequently be executed. This can
then test the PR_W N_EMPHASI SED flag and draw the window as appropriate. Common means of showing
that awindow is not emphasised are:

awindow with a shadowed border is drawn without its shadow
any highlighted region may be drawn without its highlight
awindow that has atext cursor does not display its cursor

The last of these three differs from the other two in that it must not be done in the window'swn_dr aw
method. The reason is that thereis only ever one cursor visible on the screen at any one time and the
window server functionwer aseText Cur sor erasesthe text cursor regardless of the window in which it
appears. An unemphasised window will receive WN_DRAWMessages (for example, from thewn_r edr aw
method) and so acall towEr aseText Cur sor from within thewn_dr aw method could result in the removal
of the text cursor from another currently emphasised window.

An application can avoid the possibility of 'stealing' another window's text cursor by confining all callsto
wText Cur sor andwEr aseText Cur sor to be from within awindow'swn_enphasi se method. When
changing emphasis from one window to another, system code always sends aWN_EMPHASI SE, FALSE
message (which may call wer aseText Cur sor) to the window losing emphasis before sending a
WN_EMPHASI SE, TRUE message (which will, if necessary, call wText Cur sor) to the window gaining
emphasis. The currently emphasised window will thus be guaranteed to display itstext cursor, if it has one.

A window that contains one or more child windows may delegate all or part of the processing of a
WN_EMPHASI SE message to its child windows. An example of thisis shown in the behaviour of adialog box.
On receipt of aWN_EMPHASI SE message, a dialog box changes the appearance of its border and then sends
aWN_EMPHASI SE message to one of itsitems (the one with ‘focus).

A dialog box also illustrates the case where application code may send WN_EMPHASI SE messages other than
in response to such a message sent by system code. When a user presses the up or down arrow keys, a
dialog responds by changing the focus from one dialog item to another. As part of this process
WN_EMPHASI SE messages are sent to the two items concerned. A similar process occurs when switching
between the Find window and the main display window in the Database application.

Insuch asituation it isimportant to obey the rule that a W_EMPHASI SE, FALSE message must be sent to
the window |osing emphasis before sending awN_EMPHASI SE, TRUE message to the window gaining
emphasis.

CHAPTER 7

DIALOGS

A dialog box displays the current values of one or more dataitems and, in general, allows the user to modify
one or more of these values.

This chapter describes the basic mechanisms provided in HWIM for the creation and operation of dialogs.
Dialog boxes may be created and used at a number of levels; this chapter isintended to describe the more
common uses that cover the great majority of cases.

Some of the DLGBOX methods are complex, having to cope with avariety of cases. For most purposesit is
not necessary to understand these methods in detail - the essential information for most uses will be found
in this chapter. The Dialog Controls chapter contains the essential information about the standard dialog
components that are supplied in the HWIM library.

In an HWIM application the most common use of adialog isas aresult of the user selecting acommand
from a command menu. In response to an Open file command, for example, a dialog would be presented to
allow the user to specify the name (and possibly the type) of the file to be opened.

There are a number of system dialogs that may be run by specific WsERV methods, such as
ws_error_dial og,ws_query_di al og andws_f or mat _di al og, described in the Using the System
Components chapter. Application-specific dialogs are usually started by means of the window server
object'sws_do_di al method, or the equivalenthLaunchbDi al utility function.

All HWIM dialogs are modal, that is, while the dialog is visible the user can interact with the application
only viathat dialog; the application enters a'mode’ such that all attemptsto interact with, say the menu bar
are disallowed. This mode terminates when the user satisfactorily completes the dialog.

Application-specific dialogs use an instance of (a subclass of) DLGBOX which is a subclass of the BW N
bordered window class, viathe DLGCHAI N abstract class, asindicated in the following class diagram.

SJowing S bwin 2
LT A— !
- I - i
. . o
o /‘ -7
s T B
. -
" dlgehain G 2 dighox 2
1 L —
L

The following four sections describe the essential information about the DLGCHAI N and DLGBOX classes and
methods. On first reading you may prefer to skim quickly through these sections and go on to the Using
dialog boxes section.

The DLGCHAIN class

From the point of view of an application writer who wishes to make use of dialog boxes, this section is not
essential reading. Itisincluded largely for interest only, but may be of help in understanding the
significance of the DLGBOX_NO_DDP flag, described in the following The DLGBOX class section.

The DLGCHAI N abstract class subclassesBW N, but adds or modifiesno methods. It adds asingleitem of
property that makes all instances of its subclasses suitable for including in achained list of objects. The

7-1

OBJECT ORIENTED PROGRAMMING GUIDE

property, dl gchai n. next , isused to contain the handle of the next item in alist of DLGCHAI N instances.
The relevant header information is contained in the generated header file digbox.g.

A DLGCHAI Nlist is maintained by the application's instance of (asubclass of) WSERV to implement stacked
dialog boxes. The foremost dialog's handleis stored inwser v. di al .

Other subclasses of DLGCHAI N may also beincluded in thislist. For example, Help ‘dialogs’ (which do not
subclass DLGBOX) may appear in the list, intermixed with true dialogs.

The DLGCHAI N class also defines the PR_W N_NO_DDP flag, principally for use by the DLGBOX subclass.
Any subclass of DLGCHAI N may, during , itsinitiaisation, set thisflaginitswi n. f | ags property. The
normal stateisfor thisflag to be clear, which signals that an instance whose handle appearsin the

wserv. di al listisprepared to haveits handle written to the magic static Dat Di al ogPt r . An advantage of
doing so isthat the handle does not need to be passed as a parameter to any utility functions. Thisfeature
isused, for example, by the dialog box utility functions described in the HWIM Utility Functionschapter.

A subclass of DLGCHAI N that does not set the PR_W N_NO_DDP flag should write its handle to
Dat Di al ogPt r when it addsitself at the front of thewser v. di al list, during initialisation. Note that this
handle may be overwritten by adifferent value when another subclass of DLGCHAI N adds itself to thelist.

Any such subclass must cooperate with other itemsin thewser v. di al list. If, on destruction of an
instance, Dat Di al ogPt r containsits own handle, it must scan all the remaining itemsin the list and write to
Dat Di al ogPt r the handle of thefirst item for whichwi n. f | ags does not contain PR_W N_NO_DDP. An
object's handle may therefore be written toDat Di al ogPt r during the destruction of another item in thelist.
As a consequence, this behaviour is mandatory, even if the instance does not actively write its own handle
to Dat Di al ogPt r oninitialisation.

The DLGBOX class

The DLGBOX class provides aflexible set of mechanisms for displaying and controlling awide variety of
dialog boxes. Although formally an abstract class (since some methods are DEFERred) an instance of
DLGBOX may be created and used to display simple notification dialogs. The majority of normal dialogs may
be created and used with a subclass that replaces at most two methods: very few dialogs require all the
DEFERred methods to be defined. Thisis discussed at greater length in the later Using dialog boxes section.

This and the following two sections contain information about dial og boxes and the available methods that
islargely needed for reference. On first reading you may wish to skim quickly through them and concentrate
on the Using dialog boxes section, which places greater emphasis on the more practical aspects.

An HWIM dialog box consists of abordered window containing between one or more lines, or items. Each
item may be plain text, acontrol, or acombination of aplain text prompt and a control. Each control may be
an instance of one of many different classes, including:

achoicelist, allowing selection of one of alist of options
an action list, containing one or more buttons (this may only be used asthe last item in a dialog)
an integer (WORD or LONG) numeric editor

afloating point numeric editor

atime editor

adate editor

ascrolling or non-scrolling text editor

asecret datainput box

afilename choicelist

afilename editor

an application-specific control

A dialog written for the Series 3 (or for the Series 3ain compatibility mode) may contain up to seven items,
which may be divided into two groups by a single underline. A Series 3adialog can display up to nine items,

7-2

7 DIALOGS

any number of which may be underlined. Note that the inclusion of an action list, which occupiestwo lines,
reduces the number of items that may be displayed. On the Series 3athe inclusion of more than one
underline may also reduce the possible number of items.

In the mgjority of dialogs asingle underline is used to separate the first item, designated to be the dialog
title, from those that follow. Thetitleis normally, but not necessarily, plain text.

Dialog boxes use the following structs, defined in the generated header file digbox.g:
typedef struct
{
UWORD f 1 ags;
TEXT title[1l]; [* ZTS string */
/* followed by a byte count of the followi ng itens, */
/* each of which has a |eading |ength byte */
} HD_DLGBOX_RSC;

typedef struct

{

WORD f | ags; /* initialisable DB_I TEM fl ags */

UBYTE cl ass; /* class of item*/

TEXT pronpt[1]; /* ZTS string */

/* followed by an I N_XXX conponent-specific initialisation structure */
} AD_DLGBOX; /* header for each itemin resource information */

typedef struct

{

PR_LODGER *hand,; /* handl e of item s control */

PR_TEXTW N *pr onpt ; /* handl e of pronpt for item™*/

WORD f | ags; /* collection of DLGBOX_| TEM XXX flags */
} DLGBOX_| TEM /* internal representation of itens */

Thefirst two of these structs correspond to the DI ALOG and CONTROL resource structs respectively. They
represent the in-memory copies of resources of the corresponding types. The resource structs themselves
are described in the Using dialog boxes section, later in this chapter. The third struct is used for the internal
representation of each of the dialog box items, inthedl gbox. i t emarray that is described below.

Property
The DLGBOX class contains the following items of property that may be useful to developers.

dl gbox.item used internally to provide access to an array of DLGBOX_| TEMstructs for
the component items. Subclassers must not access the datain thisarray
other than through the supplied methods, such asdl _i ndex_t o_handl e.

dl gbox. r buf the address of a user-supplied 'result' buffer, from which initialisation data
may be read and to which result data may be written. The buffer's address
may optionally be passed to the window server object'sws_do_di al
method or the equivalenthLaunchDi al utility function.

dl gbox. dinrid either zero or the resource id of atext message that isto be displayed if a
user attempts to modify a'dimmed' control.

dl gbox. hel prid either zero or the resource id of a context -specific Help resource.

dl gbox. f | ags acollection of state flags, described below.

dl gbox. focus TRUE if keyboard focusis held by one of the dialog box controls. Only

system code may writeto thisitem.

dl gbox. count acount of the number of itemsin the dialog box, including any dialog title.
Only system code may write to thisitem.

dl gbox. current the index of the dialog's component control that currently has focus. Only
system code may writeto thisitem.

Dialog box flags
There are three levels of flags that are associated with dial ogs.

Thefirst of these contains flags that are of significanceto the dialog as awhole. They are normally specified
by thef | ags field of aDI ALOG resource and have names that start with DLBOX_.

OBJECT ORIENTED PROGRAMMING GUIDE

The second level contains those flags that are of interest to the dialog box, but are associated with each
separate control. These flags are normally specified by the flags field of a CONTROL resource, and have
names that start with DLGBOX_I TEM .

Thethird level isflagsthat are private to each component control. These flags are described for each type of
control in the following chapter.

DLGBOX_ flags

The content of dI gbox. f 1 ags may be any sensible combination of the following flags:

DLGBOX_NOTI FY_ENTER if thisflag is set the dialog box will be sent aDL_KEY message when
the dialog receives an Enter keypress.

DLGBOX_NOTI FY_ESCAPE if thisflag is set the dialog box will be sent aDL_KEY message when
the dialog receives an Esc keypress.

DLGBOX_RBUF_FI LLED if thisisnot set anddl gbox. r buf isnotNULL, system code will
write to* dl gbox. r buf onexitingthedialog. Thevaluethat is
written indicates the key that was pressed to termunate the dialog. A
subclass that usesdl| gbox. r buf for its own purposes should set
thisflag.

DLGBOX_ACTI ON_LI ST thisflag must only be set if the dialog contains an action list (class
ACLI ST) asitslast item. It does not need to be explicitly included in
the DI ALOGresource asit is set automatically during the initialisation
of an ACLI ST component control. When set (provided
dl gbox. absor b iSFALSE) al received keys are first offered to the
action list by sending it awN_KEY message, which returnsavalue
indicating whether or not the keypress matched one of the buttons.

DLGBOX_SMALL_ACTI ON_LI ST this flag must only be set if the dialog contains a'small’ action list
(class SMACLI ST) asitslast item. It does not need to be explicitly
included in the DI ALOGresource asit is set automatically during the
initialisation of an SMACLI ST component control. When set
(provided dl gbox. absor b iSFALSE) all received keys arefirst
offered to the action list by sending it aWN_KEY message, which
returns a value indicating whether or not the keypress matched one
of the buttons.

DLGBOX_NOTI FY_ALL_ACT if thisflag isclear, report only those keys that match an action button
by sending the dialog box aDL_KEY message, otherwise send a
DL_KEY message for all keypresses that have been offered to the
action list, irrespective of whether they matched an action button.
Thereis no need to include this flag unless the dial og contains one
of thetwo forms of action list.

DLGBOX_REPORT_ACT_HORI Z if akeypressto an action button causesthe dialog to terminate, a
value may be written to* dl gbox. r buf (see
DLGBOX_RBUF_FI LLED). If DLGBOX_REPORT_ACT_HORI Z is set, the
value written to* dl gbox. r buf istheindex number of the button
that matched the keypress (or -1 if it did not match). Otherwise the
valueisthe uppercased key code of the keypress. Thereisno need
to include this flag unless the dial og contains one of the two forms of
action list.

DLGBOX_NO_WAI T if thisflag isclear, the call tothews_do_di al method or to
hLaunchDi al to start the dialog will not return until thedialogis
complete. See Dialogs with and without WAIT, later in this chapter.

DLGBOX_APPEND_UNI TS_TI TLE set thisflag to append the current preferred units (cm or inches) to
any dialog title.

DLGBOX_NO_SHADOW if thisflag is set the dialog box is created without a shadow to its
border.

7 DIALOGS

DLGBOX_NO_DDP

PR_W N_FORCE_RI GHT

PR_W N_FORCE_LEFT

PR_W N_FORCE_BOTTOM

PR_W N_FORCE_TOP

DLGBOX_ITEM_ flags

if thisflagisclear, the dialog box's handle iswritten to

Dat Di al ogPt r during initialisation. On destruction, either NULL or
the handle of another item inthewser v. di al listiswritten back to
Dat Di al ogPt r. The handle, if any, that iswrittenisthat of the
foremost remaining item for which thisflagis clear.

Normally thisflag isleft clear to improve the efficiency of dialog-
related utility functions, which then do not need to pass the dialog
box handle as a parameter.

if set, the dialog will be positioned at the extreme right of the screen
(see the Windows chapter).

if set, the dialog will be positioned at the extreme left of the screen
(see the Windows chapter).

if set, the dialog will be positioned at the bottom of the screen (see
the Windows chapter).

if set, the dialog will be positioned at the top of the screen (see the
Windows chapter).

These flags apply to asingle item within adialog box. They are read from the initialisation data for each
dialog box control, which is normally loaded from aresource file. They are thus normally specified by aflags
fieldin aCONTROL resource that is used as adialog box component. The flags are stored for each element in
the array indicated by dI gbox. i t emand may be any combination of the following flags:

DLGBOX_| TEM_NOTI FY_CHANGE
D

DLGBOX_I TEM_NOTI FY_FOCUS

DLGBOX_| TEM_UNDERLI NED

DLGBOX_| TEM APPL_CAT

DLGBOX_| TEM_CENTRE

DLGBOX_| TEM_NEEDS_PACK

DLGBOX_| TEM_LOCKED

DLGBOX_I| TEM_DI MVED

DLGBOX_| TEM _DEAD

if thisflagis set, changesto theitem result in the dialog box
receiving abDL_CHANGED message. Thisflag is normally only setin
theitem'sinitialisation data.

if thisflag is set, each loss or gain of focus by theitem resultsin the
dialog box being sent abL_FoCcUs message. Thisflag is normally
only setin theitem'sinitialisation data.

if thisflag is set, the corresponding item will be drawn with an
underline extending across the full width of the dialog box. Thisflag
isnormally only setin the item'sinitialisation data. For a Series 3
application it must not be set for more than one item in the dialog
box.

this flag should be set for any dialog item whose class definition is
not in the HWIM category file. Thisflag may only be set in theitem's
initialisation data.

this flag indicates that the corresponding item isto be centred in the
dialog box. Thisflag isnormally only set in the item'sinitialisation
data.

thisflag indicates that, on initialisation of the dialog box, a 'pack
selector' control isto be added as the item immediately following this
one. Thisflag may only be set in theitem'sinitialisation data, and
must be set for FNSELW N or FNEDI T component controls.

anitem for which thisflag is set is visible and can take focus, but its
value may not be changed. Thisflag may be set or cleared by the
dl _i tem | ock method.

if thisflag is set, theitemis'dimmed', that is, its control is made
invisible. Thisflag may be set or cleared by thed! _i t em di m
method.

an item for which thisflag is set may never take focus and may never
be modified. Thisflag may only be set in theitem'sinitialisation data.

OBJECT ORIENTED PROGRAMMING GUIDE

DLGBOX_| TEM_CAN_DEFER_X an item for which thisflag is set can, on losing focus, defer its self-
check (see Consistency checks below). A deferred check is
automatically registered by the setting of the
DLGBOX_I TEM_X_PENDI NG flag, described below. Applications will
normally only set the DLGBOX_I TEM _CAN_DEFER_X flag in an item's
initialisation data, but the flag is set automatically during initialisation
of FNSELWN or FNEDI T component controls.

DLGBOX_I TEM_X_PENDI NG an item for which thisflag is set must be checked before exiting the
dialog. Thisflag isset and cleared by the system and should not be
set or modified by application code.

DLGBOX methods

This section does not describe all the DLGBOX methods.With the exception of thewn_key method, only
those methods are included that can reasonably be either used or replaced.

Dialog box items are generally accessed by an index number. The items are numbered, with the first item
being item 0, in the order in which they are added to the dial og box (which is also the order in which they are
displayed).

In addition to optionally providing replacements for the DEFERred methods:

dl _changed

dl _focus

dl _l aunch_sub
dl _item new

applications are, in general, not expected to replace methods other than:

dl _dyn_init

dl _key

dl _ing_m nsi ze
dl _set_size

Occasionally adialog box may additionally need to replace one or more of:

dl _item add
dl _di med_nessage
wn_sense_hel p

Consistency checks

A dialog box control may need to perform a consistency check on its content, atypical case being anumeric
control whose value must remain within prescribed limits.

In simple cases adialog may check the consistency of itsdatainitsdl _key method. However, in many
casesit is either not feasible or inappropriate to check the value at each keypress that modifies the value.
For example, anumeric edit box whose value is constrained to lie between 10 and 50 may transiently contain
the'illegal’ text " 1" while the number "18" is being typed in.

The DLGBOX class provides amechanism for checking the validity of the content of its controls, triggered
either when focus istransferred to one of its controls, or when the dialog is being terminated by any means
other than by pressing Esc. Since a control's validity may, for example, depend on the values of one or more
of the other controls, the check on change of focus may be deferred until the dialog termination, when the
final values of al controls are known. Such items are indicated by setting the DLGBOX_| TEM_CAN_DEFER_X

flag.

The check on an item is deemed to succeed if the item islocked or dimmed, or if the check is deferred,
otherwise the control is sent anLG_SELF_CHECK message. This message returns avalue that indicates
whether or not the content has changed as well as whether the check failed or succeeded. Regardless of the
success or failure of thetest, if the return value indicates that the value has changed, and provided the
relevant di gbox. i t emarray element containsDLGBOX_I TEM_NOTI FY_CHANGED, the dialog box is sent a
DL_ CHANGED message.

7 DIALOGS

On any failure the checking stops and focusis set to the item that failed its check. This may prevent the user
from moving to another item in the dialog or from exiting the dialog (except by pressing Esc) until theitemis
modified so that it passes the check.

DL _DYN_INIT Dynamic initialisation
VO D dl _dyn_init(VO D);

This method is supplied so that it may be replaced to perform application-specific initialisation of the dialog
box after all itsitems have been added, but beforeitssizeis calculated and it is made visible.

The most common use for this method isto set the initial value of one or more controls, depending on the
current state of the application, but other actions may include dimming, locking, adding or replacing one or
more dialog items. Initialisation datamay conveniently be passed by means of a buffer pointed to by

dl gbox. r buf .

The supplied method does nothing.

DL_KEY Handle key input
I NT dl _key(I NT index, |NT keycode, |NT actbut);
Process a keypress that may potentially exit the dialog.

This method is supplied so that it may be replaced to perform application-specific processing of such
keypresses.

This message is sent by the dialog box wn_key method in the following circumstances:

when dl ghox. f | ags contains DLGBOX_NOTI FY_ENTER and the dialog is about to terminate after
receiving aw KEY_RETURN. The value of keycode iSW KEY_RETURN and act but is-1

when dl ghox. f | ags contains DLGBOX_NOTI FY_ESCAPE and the dialog is about to terminate after
receiving aw KEY_ESCAPE. Thevalue of keycode iSW KEY_ESCAPE and act but is-1

the dialog is about to terminate after receiving akey that matches abuttonin an action list. The
value of keycode isthe uppercased key code that was passed to the action list'swn_key method
and act but istheindex (O for the leftmost button) of the matching button

following any non-matching keypress received by an action list, provideddl gbox. f | ags contains
DLGBOX_NOTI FY_ALL_ACT. Thevalue of keycode isthe uppercased key code that was passed to
the action list'swn_key method and act but is-1

In all casesi ndex containsthe current value of dl gbox. current.

The method should return WN_KEY_NO_CHANGE to prevent termination of the dialog, or WN_KEY_CHANGED
to confirm termination (which causes the dialog box to be sent a DESTROY message). Before returning
WN_KEY_CHANGED the method is responsible for ensuring that any relevant dialog box stateis either saved
or returned to the initiator of the dialog box. Datamay conveniently be returned to the initiator viaa user-
supplied buffer pointed to by dl gbox. r buf .

The supplied method simply returnswN_KEY_ CHANGED.

WN_SET Set item by index
VO D wn_set (I NT i ndex, VO D *par)

Set one or more data elements in the property of the control associated with the dialog box item with index
number i ndex, by sending aWN_SET message to the control.

The parameter par isassumed to be apointer to a struct that specifies the data to be set. The type of struct
that is expected depends on the class of the control that is being set; the various structs are described in the
following Dialog Controls chapter.

This method will normally be used (rather than replaced) by application writers. See aso the various
hDI gSet XXX utility functions.

OBJECT ORIENTED PROGRAMMING GUIDE

WN_SENSE Sense item by index

VO D wn_sense(I NT i ndex, VO D *par);

Sense the property of the control associated with the dial og box item with index number index, by sending a
WN_SENSE message to the control.

The parameter par isassumed to be a pointer to a struct that matches the data to be sensed. The type of
struct that is expected depends on the class of the control that is being sensed; the various structs are
described in the following Dialog Controls chapter.

This method will normally be used (rather than replaced) by application writers. See also the various
hDl gSenseXXX utility functions.

DL_INDEX_TO_HANDLE Sense item handle
PR_LODGER *dl _i ndex_t o_handl e(I NT i ndex);
Return the handle of the control initem number i ndex.

Itisaprogramming error to call this method with avalue of i ndex that does not correspond to an existing
dialog box item.

This method is not intended to be replaced.

DL_HANDLE_TO_INDEX Sense item index
I NT dl _handl e_to_i ndex(PR_LODGER *handl e) ;

Return the index number for the item whose control handleishandl e.

Returns-1if handl e does not match any dialog item.

This method is not intended to be replaced.

DL_ITEM_DIM Dim an item
VO D dl _item di m(I NT i ndex, U NT flag);

Undim item number i ndex if f | ag iISFALSE, otherwise dim it. When an item is dimmed its control is not
displayed and its prompt does not display abullet point. It is harmlessto send adimmed item a
DL_I TEM DI M TRUE message, or an undimmed itemaDL_I TEM DI M FALSE message.

Dimming the item clears the DLGBOX_I| TEM DI MVED flag in item number i ndex and sends any prompt (an
instance of TEXTW N) aWN_SET message to clear itsPR_TEXTW N_BULLET flag. The control issent a
WN_VI SI BLE, FALSE message.

Undimming the item reverses these flag changes and sends the control aWN_VI SI BLE, TRUE message.

In either case the WN_VI SI BLE message is sent only if the dialog box wi n. f I ags contains
PR_W N_I NI TI ALI SED. This prevents any control from drawing itself during the initialisation of the dialog
box, before the whole dialog box can be made visible.

If item number i ndex has the DLGBOX_| TEM NEEDS_PACK flag set, the dimming/undimming operation is
also performed on the following PACKSEL item.

This method is not intended to be replaced.

DL _ITEM_LOCK Lock an item
VO D dl _item | ock(INT index, UINT flag);

Unlock item number i ndex if f | ag iSFALSE, otherwiselock it. When an item islocked its prompt does not
display abullet point but, unlike adimmed item, its control remainsvisible. It is harmless to send alocked
itemabDL_I TEM LOCK, TRUE message, or an unlocked itemaDL_| TEM _LOCK, FALSE message.

7 DIALOGS

Locking theitem clearsthe DLGBOX_I TEM_LOCKED flag in the item's flags field and sends any prompt (an
instance of TEXTW N) aWN_SET message to clear itsPR_TEXTW N_BULLET flag.

Unlocking the item reverses these flag changes.

If item number i ndex hasthe DLGBOX_I TEM_NEEDS_PACK flag set, the locking/unlocking operation is also
performed on the following PACKSEL item.

This method is not intended to be replaced.

DL_SET_PROMPT Change the prompt for an item
VO D dl _set _pronpt (I NT i ndex, SE_TEXTW N *par);

Send aWN_SET message to the prompt associated with item number i ndex, passing the parameter par ,
assumed to be a pointer to an SE_ TEXTW N struct (see the Text windows section of the following Dialog
Controls chapter).

This method is not intended to be replaced.

DL_SET_ITEM_FLAGS Set item flags

VO D dl _set _item flags(PR_LODGER *| odger, UINT flags);

ORthe passed f | ags into the flagsfield of the dialog box item corresponding to the control with handle
| odger.

Thismethod isintended for use by acomponent control to set some aspect of the dialog's state. It is used,
for example, by the FNSELWN and ACLI ST dialog control classes.

The DLGBOX_I TEM_LOCKED and DLGBOX_I TEM DI MVED flags should be set (or cleared) by use of the
appropriate specific method. Note that, apart from these two flags, no meansis provided for clearing any of
an item'sflags.

This method is not intended to be replaced.

DL_TAKE_FOCUS Move focus to specified item
I NT dl _take_focus(INT index);
Attempt to change the focus to item number i ndex.

A deferred consistency check is applied to the current item. If the check fails the focus change is hot made.
Otherwise, provided the specified item is not already the one with focus, the focusis switched to the
specified item:

any prompt of theitem that islosing focusis sent awN_EMPHASI SE, FALSE message

provided its flags do not contain DLGBOX_I TEM DI MVED or DLGBOX_I TEM_LOCKED, the control of
theitemthat islosing focusis also sent aWN_EMPHASI SE, FAL SE message

if the flags of theitem that islosing focus contain DLGBOX_I TEM_NOTI FY_FOCUS, the dialog box is
sent a DL_FOCUS message to inform it that the item islosing focus

aTRUE valueiswrittentodl gbox. f ocus and dl gbox. current issettoi ndex, sothat it now
refersto theitem that is gaining focus

any prompt of theitem that is gaining focusis sent aWN_EMPHASI SE, TRUE message

provided theitem that is gaining does not have the either of the flagsDLGBOX_| TEM DI MVED or
DLGBOX_I TEM_LOCKED set, the control of thisitem isalso sent aWN_EMPHASI SE, TRUE message

if theitem that is gaining focus has the flag DLGBOX_I TEM_NOTI FY_FOCUS set, the dialog box is
sent a DL_FOCUS message to inform it that the new item is gaining focus

OBJECT ORIENTED PROGRAMMING GUIDE

The method returnsFALSE if afailed consistency check prevents a change of focus being made. In all other
circumstances (including the case where the specified item is already the one with focus) the method returns
TRUE.

This method is not intended to be replaced. It is not suitable for being called from thedl _dyn_i ni t
method. If an application wishesto set the focus on initialisaion, it should do so from areplaced

dl _set _si ze method. It may be called from any other method (such asdl _key) once the dialog has been
made visible.

DL_ITEM_ADD Add an item
I NT dl _item add(AD_DLGBOX *par);

Append, asthe current last line of the dialog box, the control specified by the AD_DLGBOX struct pointed to
by par . Thisstruct is defined indlgbox.g as:

typedef struct
{

WORD f | ags; /* initialisable DB_I TEM fl ags */

UBYTE cl ass; /* class of item*/

TEXT pronmpt[1]; /* ZTS string */

/* followed by an I N_XXX conponent-specific initialisation structure */
} AD_DLGBOX; /* header for each itemin resource information */

Itisaprogramming error, with unpredictable results, to add an item if the dialog box currently contains the
maximum number of items.

The method first creates an instance of the classpar - >cl ass, writing its handle to the appropriate element
of the array indicated by dI gbox. i t em If par - >f | ags does not contain DLGBOX_I TEM_APPL_CAT the
classis assumed to be a standard control in the HWIM category. Otherwise the method sends a

DL_I TEM NEWmessage to create the instance. The par - >f | ags valueis copied into the appropriate

dl gbox. i t emarray element.

If the string at the start of the par - >pr onpt buffer isnot anull string, an instance of TEXTW N s created,
writing its handle to the appropriate dl gbox. i t emarray element. Thisinstanceissent awWN_| NI T message,
passing the address of an1 N_TEXTW N struct and the dialog box handle. Thel N_TEXTW N struct contains
the prompt string and ast at e value of O if par - >f | ags contains any of DLGBOX_I TEM_DI MVED,
DLGBOX_| TEM_LOCKED or DLGBOX_| TEM DEAD, otherwise st at e isset tol N_TEXTW N_BULLET (see also
the Text windows section of the Dialog Controls chapter).

The method then sendsaWN_I NI T message to the item's control, passing a pointer to any data (assumed to
be a suitable initialisation structure) that follows the terminating zero of the string in the par - >pr onpt
buffer. Further parameters are the dialog box handle and the handle of the control in the previouslinel (see
also the Special note below).

If par - >f | ags contains DLGBOX_| TEM_UNDERLI NED, the item will be drawn with an underline (only one
underlineis allowed on the Series 3).

Finally, the value of dl gbox. count isincremented by one.

The method returns zero to indicate that no failure has occurred. It is thus suitable for calling under the
protection of p_enter.

This method may be either used or replaced by application writers. It is called by system code, once for each
component control, from the WSERV ws_do_di al method after the dialog resource has been loaded from the
resourcefile.

An application may call this method to add one or more items, depending on run-time circumstances,
although thedl _i t em append method - which also loads the item's resource - will usually be more
appropriate. All such uses must be beforethe DL_SET_SI ZE message is processed at the DLGBOX level.
Application code will typically send aDL_I TEM ADD message fromthed! _dyn_i ni t method.

IThiswill contain an indeterminate value when adding the first item, but thewn_i ni t methods of most
controlsignore this value. Those that make use of this parameter are never used asthefirst iteminthe
dialog box.

7-10

7 DIALOGS

Since the method is called by system code once for each item that appearsin the dialog resource, it may be
replaced to omit one or more items, or to add items at positions other than the end of the dialog, depending
on run-time circumstances.

The following example optionally omits the third item (with index number 2) from adialog. It assumes that
the MyDL G subclass of DLGBOX adds two items of property: nydl g. needed, which iSTRUE if theitem isto
beincluded, andmydl g. omi t t ed whichisinitially FALSE and is set to TRUE if theitemisnot included in
the dialog (an alternative would be to store thisinformation in aresult buffer, pointed to by dl gbox. r buf).

METHOD VOI D nydl g_dl _item add(PR_MYDLG *sel f, AD _DLGBOX *par)

{
if ((self->dl gbox.count==2)&&(!self->nmydl g. needed) &&(! sel f -
>nydl g.om tted))
sel f->nydl g. om tt ed=TRUE;
el se
p_supersend3(sel f, O DL_I TEM ADD, par) ;

Special note

If par - >f | ags containsDLGBOX_| TEM_NEEDS_PACK (normally only if adding a control of either the
FNEDI T or the FNSELWN class) then this method will result in the addition of two controls, thus occupying
two linesin the dialog box. After the creation of the first control, but before itsinitialisation, the method
sends afurther, recursive, DL_I TEM_ADD message to create a PACKSEL control with an associated " Di sk”
prompt string (this prompt isread from the SYS_PACK resourcein the system resource file). In this case the
final parameter passed in the WN_I NI T message to the first control is the handle of the following control
(that is, the instance of PACKSEL).

DL_ITEM_APPEND Add an item by resource id

VO D dl _item append(I NT rid);
Append the item specified by the resource item with resourceidri d.

Theresource item isloaded into atemporarily allocated buffer, the loaded data being assumed to be an
AD_DLGBOX struct. The control and any associated prompt are appended to the dialog box, as described for
thedl _i t em add method. The temporarily allocated buffer is freed before the method returns.

The method must not be used to add an item following any action list item.

An application may call this method to add one or more items at the bottom of a dialog, depending on run-
time circumstances, for example, to generate two different, but similar, dialogs from a common dialog box
resource. All such uses must be before the DL_SET_SI ZE message is processed at the DLGBOX level. A call
from application codetothed! _i t em append method will typically befromthedl _dyn_i ni t method.

This method is not intended to be replaced.

DL_ITEM_REPLACE Replace an existing item

VO D dl _itemreplace(lINT index, INT rid);
Replace existing item number i ndex by the item specified by the resource item with resourceidri d.

The existing control and any corresponding prompt are sent DESTROY messages. The resource item isthen
loaded into atemporarily allocated buffer, the loaded data being assumed to be an AD_DLGBOX struct. The
replacement item and any corresponding prompt are created and initialised as described for the

dl _i t em add method, their handles overwriting those that they replace. The method does not increment
dl gbox. count . Thetemporarily allocated buffer isfreed before the method returns.

This method must not be used with aresource which has the DLGBOX_| TEM _NEEDS_PACK flag set inits
flags data.

An application may call this method to replace one or more items, depending on run-time circumstances, for
example, to generate two different, but similar, dialogs from acommon dialog box resource. All such uses
must be before the DL_SET_SI ZE message is processed at the DLGBOX level. A call from application code to
thed! _i t em r epl ace method will typically be fromthed! _dyn_i ni t method.

This method is not intended to be replaced.

OBJECT ORIENTED PROGRAMMING GUIDE

DL _INQ_MINSIZE Specify minimum widths

VO D dl _ing_m nsize(lINT *pOveral IWdth, |INT *pPronptWdth, |INT *pControl W dth);

Specify the minimum widthsfor whole lineitems (* pOver al | W dt h) and for the prompt (* pPr onpt W dt h)
and control (* pCont r ol W dt h) segments of two-part items. The method iscalled from dI _set _si ze and,
on entry, all three parameters point to locations containing zero.

The supplied method does nothing.

A subclass may replace this method to write application-specific minimum valuesto any or all of
*pOver al | W dt h, * pPr onpt W dt h or *pCont r ol W dt h. Writing values that force adial og to exceed the
width of the screen will causedl _set _si ze tocall p_I| eave(E_GEN_TOOW DE) .

DL_SET_SIZE Set size of dialog
I NT dl _set_size(VAD);

Set the height and width of the dial og to the values required to display all the component items, and set the
position all components within the dialog box. AnLG_SENSE_W DTH message is sent to each component to
determine the width needed to display it.

If dl gbox. f1 ags contains DLGBOX_APPEND_UNI TS_TI TLE the SYS_CENTI METRES or SYS_| NCHES
resource (depending on whether w_ws- >wser v. f | ags containsPR_WSERV_METRI C) isloaded from the
system resource file and appended to the dialog title. Thiswill call p_pani c if the dialog has no title.

Some dialog items (such as an instance of TEXTW N used as atitle) are composed of a single control
component, whereas others are formed from two components- a prompt and a control. The width of each
component isfound by sending it anLG_SENSE_W DTH message. The dialog box width is set to contain the
widest item from each of these two groups, subject to any explicit minimum widths set by sending each
control aDL_I NQ_M NSI ZE message.

The width for single-component itemsis the larger of the width writtento* pOver al | W dt h by
dl _i ng_mi nsi ze (zero by default) and the single-component item of greatest width.

The width for two-component items is the width of the widest prompt plus the width of the widest control
(respectively not less than any values written to* pPr onpt W dt h and * pCont r ol W dt h by

dl _i ng_mi nsi ze) plusaminimum gutter width separation between them. Provided at |east one item is not
marked with the DLGBOX_I TEM _DEAD flag, the prompt width allows space for the prompt to include aleading
bullet to show that an item can be modified.

The width of the dialog box isthe greater of these two widths plus an allowance for the dialog box borders
and asmall gap at either side. If thisiswider than the screen, an attempt is made to clip the right hand side
of the control components. If such clipping means that one or more controls will be entirely invisible the
method callsp_| eave(E_GEN_TOOW DE) .

The height of the dialog box isjust the sum of the heights of the controls, plus the top and bottom borders
and asmall additional amount for each item that is underlined. If the total exceeds the screen height the
method callsp_| eave(E_GEN_TOOMANY) . In most cases there will always be room for the maximum number
of items, but some items (for example, instances of ACLI ST) take up additional height.

The method then positions each prompt and control by sending it anLG_SET_I D_P0S message. Unless
marked as centred, prompts are positioned at the |eft side, aligned at their left edges, and controls occupy a
right hand region, again aligned at their left edges. The prompt and control regions are aligned with the
edges of the widest centred control, subject to their being separated by asmall gap.

Finally, provided that not all items are marked with the DLGBOX_I TEM_DEAD flag, the method sets the focus
tothefirst such unmarked item - dI gbox. f ocus iS set TRUE, dl gbox. current issettotheitemand a
WN_EMPHASI SE, TRUE message is sent to the item's prompt, if it exists. The control itself isnot sent a
WN_EMPHASI SE message asit will receive one later, when the dialog box itself receives aWwN_EMPHASI SE

message.

The method returns zero to indicate that p_I| eave hasnot been called. It is suitable for calling under the
protection of p_ent er .

7 DIALOGS

This method may be replaced, but should not be called explicitly from application code. It offersthe last
opportunity to modify the dialog box content before it becomes visible. A common use isto modify the
content after the size of the dialog box has been calculated.

Any replacement method should only add further processing, before and/or after supersending the
DL_SET_SI ZE message.

DL_DIMMED_MESSAGE Display 'dimmed' message

VO D dl _di med_nessage(VO D) ;

Display a status message, using hl nf oPr i nt , indicating that alocked or dimmed can not be modified. This
method will only be called when the current dialog item is either dimmed or locked.

Theresourceid passed tohl nf oPri nt isdl gbox. di nri d or, if thisiszero, either of the system resource
id'sSYS_DI MVED_MSG Or SYS_LOCKED_MsG depending on whether or not the item's flags contain
DLGBOX_| TEM_DI MVED (if thisflag is not present the item is assumed to be locked, without testing for the
presence of DLGBOX_| TEM_LOCKED).

This method can be replaced, for example, to display a context -sensitive message.

WN_SENSE HELP Sense start id for Help
I NT wn_sense_hel p(PR_DLGBOX *sel f);
The action depends on the value of dI gbox. hel pri d asfollows:

returndl gbox. hel pri d, if it isgreater than zero.

if dl gbox. hel pri d iszero, return the result of supersending the WN_SENSE_HELP message. This
is handled by the W N superclass and returns either w_ws- >wser v. hel p_i ndex_i d or, if thisis
zero, the (negative) system resource id - SYS_HELP_ON_HELP.

if dl gbox. hel pridis-1,calp_l eave(RUN_ACTI VE_USED) . Thisis used by the ERRORDLG class,
to disable the display of help information when an error is being reported (so that, for example,
multiple nested out of memory errors can not be generated by requesting Help while an out of
memory error report isvisible).

WN_KEY Handle a keypress

I NT wn_key(I NT keycode, |INT nodifiers);

The description of this method isincluded for interest only. Applications should neither replace this
method nor call it explicitly.

Handle akeypress, directing it, if necessary, to a component control. This messageis sent by the
application'sinstance of WSERV. Any non-zero return value from thewn_key method will terminate the
dialog, causing the dialog box to receive a DESTROY message.

If dl gbox. absor b iISTRUE, al keys are directed to the current control, as described later. Otherwise keys
are processed as follows.

If the dialog contains an action list (which must always be the last item) the action list is sent awN_KEY
message, passing akey code of p_t oupper (keycode) . This message returns either anegative valueif the
keypress does not match any of the action buttons, or the index number of the button that matched the
keypress (the leftmost button has index number zero).

If there was no match anddl gbox. f | ags does not contain DLGBOX_NOTI FY_ALL_ACT , processing
continues with the testing for specific keys, as described later.

Otherwise (that is, either the keypress matches an action button, or dl gbox. f |1 ags contains
DLGBOX_NOTI FY_ALL_ACT) aforced consistency check is applied to all controls. If any control failsits
check the method terminates, returning WN_KEY_NO_CHANGE (0) so that the dialog box is not exited. If the
consistency check succeeeds, the method sends a DL_KEY message, passingd| gbox. current,

p_t oupper (keycode) and the key-matching value returned by the WN_KEY message that was sent to the

OBJECT ORIENTED PROGRAMMING GUIDE

action list. The method terminates, returning the value returned by the DL_KEY message. Before returning,
and provided that:

the return value is non-zero (that is, the dialog is terminating)
dl gbox. rbuf isnotNULL
dl gbox. f 1 ags does not contain DLGBOX_RBUF_FI LLED

aWOoRD of dataiswrittento*dl gbox. r buf . If dl gbox. f | ags contains DLGBOX_REPORT_ACT_HORI Z this
dataisthe index number of the action button that was sel ected. Otherwise the value written to
*dl gbox. r buf isthe uppercased key code.

Provided the keypress has not been processed by an action list, the following specific keypress codes are
tested:

W KEY_RETURN thiskey isignored if the dialog contains an action list (dl gbox. f | ags contains
DLGBOX_ACTI ON_LI ST or DLGBOX_SMALL_ACTI ON_LI ST) in which case the
method terminates immediately, returning WN_KEY_NO_CHANGE. Otherwisea
forced consistency check is applied to all controls. If any control failsits check
the method terminates, returning WN_KEY_NO_CHANGE.

If dl gbox. f 1 ags does not contain DLGBOX_NOTI FY_ENTER the method just
returns WN_KEY_CHANGED, otherwise it returns the result from sending abL_KEY
message. In either case, provided:

the return value is non-zero (that is, the dialog is terminating)
dl gbox. r buf iSnotNULL
dl gbox. f | ags does not contain DLGBOX_RBUF_FI LLED

the value of dI gbox. current iswritten to the WORD pointed to by
dl gbox. r buf .

W KEY_ESCAPE provided di gbox. r buf isnotNULL anddl gbox. f | ags does not contain
DLGBOX_RBUF_FI LLED write, to the WORD pointed to by dI gbox. r buf , either
W KEY_ESCAPE or, if dl gbox. f | ags contains DLGBOX_REPORT_ACT_HORI Z, a
vaueof -1

W KEY_UP move up 'one’ item in the dialog. The current item becomesthefirst earlier item
whose flags do not contain DLGBOX_I TEM_DEAD. A DL_TAKE_FOCUS message is
sent, passing the new current item'sindex number. Moving up from the first item
in the dialog positionsto the last item

W _KEY_DOWN move down 'one’ item in the dialog. The current item becomes the first following
item whose flags do not contain DLGBOX_| TEM_DEAD. A DL_TAKE_FOCUS
message is sent, passing the new current item's index number. Moving down
from the last item in the dialog positions to thefirst item

W KEY_PAGE_UP move to the first' item in the dialog. The current item becomesthe first item
whose flags do not contain DLGBOX_| TEM DEAD. A DL_TAKE_FOCUS message is
sent, passing the new current item's index number.

W KEY_PAGE_DOWN move to the 'last' item in the dialog. The current item becomes the last item whose
flags do not contain DLGBOX_| TEM DEAD. A DL_TAKE_FOCUS message s sent,
passing the new current item's index number.

If dl gbox. f ocus iSFALSE, any other keypressisignored and the method returnswN_KEY_NO_CHANGE.
Otherwise the keypress is directed to the dialog's current component control, as explained in the following
paragraphs. All incoming keys are processed in thisway if dl gbox. absor b iSTRUE.

If the flags field of the current item contains DLGBOX_| TEM DI MVED or DLGBOX_| TEM_LOCKED, a
DL_DI MMED message is sent, to inform the user that the item can not be modified, and the method then
returns WN_KEY_NO_CHANGE.

Otherwise the current control is sent aWN_KEY message, and further processing depends on the return
value:

7 DIALOGS

if the return value isWN_KEY_ABSORB_ON, dl gbox. absor b is set TRUE, so that all subsequent
keyswill be directed to the current control

if the return value is anything other than WN_KEY_NO_CHANGE and dl gbox. absor b iSTRUE,
dl gbox. absor b is set FALSE, so that subsequent keys may be processed by the dialog box as
described above

if the return value isWN_KEY_CHANGED and the current item's flags contain
DLGBOX_I TEM_NOTI FY_CHANGED, the dialog box is sent a DL_ CHANGED message

In al these cases the dialogwn_key method returnsWN_KEY_NO_CHANGE.

Deferred DLGBOX methods

Thereis no general requirement to subclass DLGBOX to provide any of these DEFERred methods. Each
method need be supplied only if the conditions are satisfied for the corresponding message to be received.

DL _CHANGED Iltem changed message

VOl D dl _changed(| NT i ndex);
Notify the dialog box that the item with index number i ndex has changed in some way.

This message will only be received for values of i ndex for which the flagsfield of the corresponding item
contains DLGBOX_I TEM_NOTI FY_CHANGED. The method need not be supplied for any dialog in which no
items are so marked.

A typical use would beto modify an item - say the allowed range of anumeric edit box - asaresult of
changes made by the user to some other item.

DL_FOCUS Focus changed message
VO D dl _focus(WORD i ndex, WORD fl ag);

Notify the dialog box that the item with index number i ndex has gained or lost focus. The value of flagis
TRUE if theitem has gained focus, or FALSE if the item haslost focus.

This message will only be received for values of i ndex for which the flagsfield of the corresponding item
contains DLGBOX_I TEM_NOTI FY_FOcUS. The method need not be supplied for any dialog in which no items
are so marked.

A common useisto detect when an edit box loses focus. This may be an appropriate time to sense the value
and make any necessary modifications to other dialog box items.

DL _LAUNCH_SUB Launch sub-dialog if required

VOl D dI _I aunch_sub(| NT i ndex);

This message is sent by the window server object if, on return from awn_key message sent to the dialog,
thevalue of w_ws- >wser v. subdi al isnon-zero. Thevalueof i ndex istheitem number of theitem that is
launching the subdial og, plus one.

The method need not be supplied for any dialog that does not write a non-zero value to
w_ws- >wser v. subdi al . For further information, see Subdial ogsin the following Using dialog boxes
section.

DL_ITEM_NEW Create non-system dialog item
VO D *dl _item new(AD_DLGBOX *par);
Create an instance of the application-specific dialog item with class number par - >cl ass.

Assuming that the application category file ismyapp.cat, the code of adl _i t em newmethod for adialog
box that has application-specific items defined only in this category would be:

OBJECT ORIENTED PROGRAMMING GUIDE

f _new(CAT_MYAPP_MYAPP, par - >cl ass) ;

If, exceptionally, adialog box contains two or more application-specific items, with classes defined in
different categories, the method will need additional logic to create the item from the appropriate category.

Thismessage will only be received if the flags field associated with one or more of theitemsin adialog box
contains DLGBOX_| TEM _APPL_CAT, indicating that the item does not have its class definition in the HWIM
category. The method need not be supplied for any dialog whose items are not so marked.

Using dialog boxes

In all cases, the dialog must ultimately be started up by means of the WSERV ws_do_di al method. This may,
however, beindirect, such aswhen using thehLaunchDi al utility function or an equivalent application-
specific function.

All sample code in this section assumes that the application category file ismyapp.cat.

Default dialog behaviour

Oneitem in the dialog box generally hasfocus, that is, it receives all keys (viaaWN_KEY message to its
control) directed to the dialog box, except for those, listed below, that are processed by the dialog box itself.
On receipt of akey, acontrol may elect to absorb all further keys directed to the dialog box.

Provided that one of the dialog's component controls has not elected to absorb all keys directed to the
dialog box:

the up and down cursor keys respectively move focus to the previous or the next item in acyclic
fashion

the page up and page down keys respectively move the focusto the first or the last item that is
capable of receiving focus

the Enter key terminates the dialog. If the dialog has aresult buffer (that isdl gbox. r buf isnot
NULL) the value of dI gbox. cur rent iswritten to the first WORD of thisbuffer

the Esc key terminates the dialog. If the dialog has aresult buffer (that isdl gbox. r buf isnot
NULL) avalue of W KEY_ESCAPE is written to the first WORD of this buffer

If no control is absorbing all keys and the dialog contains an action list of buttons asits last item, this
behaviour is modified. In this case all incoming keys are first offered to the action list and if the key matches
one of the buttonsin the action list the dialog is terminated. If the dialog has aresult buffer (that is

dl gbox. r buf isnot NULL) the uppercased key code iswritten to the first WORD of this buffer. Unlessit
matches a button in the action list, the Enter key isignored. Only if the key is not recognised by the action
listisit then offered for processing as described above.

This action may be further varied by other di gbox. f | ags values asfollows:

if the DLGBOX_NOTI FY_ALL_ACT flag is set, keysthat do not match a button in the action list also
cause the dialog to terminate

if the DLGBOX_REPORT_ACT_HORI Z flag is set, the value written to the result buffer will be the
index of the matching button (the leftmost button has an index of zero, and non-matching keys give
avalue of -1) rather than the key code

Other variations are generally accomplished by subclassing DLGBOX, and some such variations are
described later.

Dialogs and resource files

The content of adialog is normally specified by aresourcefileitem, using dialog box resource file structures
that are defined inhwim.rh. These resources al so use definitions of constants (in hwim.rg) that are derived
from the HWIM category file. All resource files that contain dial og resources must contain the following two
lines before the definition of any dialog resource:

#i ncl ude <hwi m rh>
#i ncl ude <hwi mrg>

The DI ALOG resource struct is defined inhwim.rh as:

7-16

7 DIALOGS

STRUCT DI ALOG

{

WORD f | ags=0;

TEXT title="";

LEN BYTE STRUCT control s[]; /* array of CONTROL resource itens only */

}
and the CONTROL resource struct is defined as:

STRUCT CONTROL

LEN {

WORD f | ags=0;

BYTE cl ass; /* class of control */

TEXT pronpt=""; /* Pronpt for item*/

STRUCT i nf o; /* eg CHLI ST, TXTMESS, EDWN, or NCEDIT */
}

A simple dialog, consisting of atitle, afixed message and a'Continue’ button, might be defined by the
following resource, assumed to bein a myapp.rss source file:

RESOURCE DI ALOG si npl e_di al og

{

f 1 ags=DLGBOX_NO_DDP;

title="Dialog title"; /* an enpty string neans that the dial og has no
title */

control s=

{
CONTROL

{

cl ass=C_TEXTW N;

fl ags=DLGBOX_I TEM _CENTRE| DLGBOX_| TEM_DEAD;
i nf o=TXTMESS

{
f1 ags=l N_TEXTW N_AL_CENTRE;

str="This is a nessage";

b
b
CONTROL

{
cl ass=C_ACLI ST;
i nf o=ACLI ST

{
ri d=-SYS_AC CONTINUE; /* the id of a systemaction |ist
resource */
b
s
}

In use, thiswill display (in compatibility mode on the Series 3a) the following dial og, which exitswhen the
user presses the Esc key.

([Dialog title
This 1= a message
Continue
E=c

The dialog resource uses a one-button action list defined by the the system resource SYS_AC_CONTI NUE
(see the HWIM Resour ce Files chapter) and is based on the following hwim.rh resource structs:

STRUCT TXTMESS /* Initialising struct for a text w ndow */
{
WORD f | ags=0;
TEXT str="",; /* message defaults to enpty string */
}

OBJECT ORIENTED PROGRAMMING GUIDE

STRUCT ACLIST /* Initialising struct for action list */

{
LINK rid;
}

together with the DI ALOG and CONTROL structs, described earlier.
Notethat, in general, adialog resource contains three levels of flags data:

the highest level, associated with the whole dialog box, can contain a combination of the
DLGBOX_XXX flags that may appear indl gbox. f | ags. Exceptionally, the example sets
DLGBOX_NO_DDP. Thisis done because the dial og does not use any dialog utility functions, so
there is no advantage in writing its handle toDat Di al ogPt r (but it would do no harm to omit this
flag). Although the dialog contains an action list asits last item, thereis no need to set
DLGBOX_ACTI ON_LI ST since this happens automatically

the second level, associated with a particular control, can be a combination of the

DLGBOX_I TEM_XXX flags that may appear inthef | ags field of each of the dialog's component
items. In the above example, the text message control isto be centred in the dialog box and not
selectable with the cursor keys

finally, there may be a set of flags (usually I N_XXX) specific to the initialisation of the particul ar
class of which the control isaninstance. In the example, thel N_TEXTW N_AL_CENTRE flag
ensures that the text is centre aligned in its control (atext window)

Launching a dialog

A dialog islaunched by means of the WSERV ws_do_di al method. Thisloads the dialog datafrom a
resourcefile, and then initialises and runsthe dialog. It is used as shown below:

p_send5(w_ws, O W6_DO DI AL, p_getlibh(cat), cl ass, pdata);

wherecat andcl ass are respectively the category and class numbers of the dialog box class (DLGBOX or a
subclass of DLGBOX) that isto berun, and pdat a isapointer to aDL_DATA struct, defined inhwimman.g as:

typedef struct
UWORD i d; /* resource id of a DI ALOG resource*/
VOI D *rbuf; /* address of result buffer, or NULL */
PR_DLGBOX **pdl g; /* address of where to write handl e of dialog, or NULL
*
/ } DL_DATA;
An alternativeisto usethehLaunchbi al utility function:
I NT hLaunchDi al (P_CATID cat, |INT class, DL_DATA *pdata);
Examples of the use of this function appear in the following text.
Simple dialogs

A simpledialog, for the purposes of this section, is one that uses the DLGBOX class, rather than subclassing
it. Such adialog is easy to define and run, but suffers from the following limitations:

theinitial valuesit displays are entirely determined by the (static) resourcefile data: the dialog data
may not be determined dynamically from current values stored in the application

knowledge of thefinal state of the dialog islimited to the default information that iswrittento a
result buffer - effectively only indicating which keypress terminated the dialog

Despite these restrictions, such dialogs may be useful, say, to make a specific warning with a characteristic
appearance, or to elicit multiple choice responses (but bear in mind the system-supplied Error and Query
dialogs, run by WSERV methods).

Asan example, the dialog defined earlier may be run using code as follows:

7 DIALOGS

#i ncl ude <hw mman. g>
#i ncl ude <dl gbox. g>
#i ncl ude <myapp.rsg> /* resource file generated header file */

LOCAL_C VO D RunDl gNoResponse()
{
DL_DATA dat a;

dat a. i d=SI MPLE_DI ALOG;

dat a. r buf =NULL;

dat a. pdl g=NULL;

hLaunchDi al (CAT_MYAPP_HW M C_DLGBOX, &dat a) ;

}

Should you wish to know whether the dial og was terminated by pressing Enter or Esc, you could use the
following aternative:

I NT RunDl gW t hResponse()

{
WORD result;

DL_DATA dat a;

dat a. i d=SI MPLE_DI ALOG;

dat a. rbuf =&resul t;

dat a. pdl g=NULL;

hLaunchDi al (CAT_MYAPP_HW M C_DLGBOX, &dat a) ;
return(result);

}
Thereturn value isw KEY_ESCAPE only if the dialog was exited by pressing Esc.

To go beyond the range of possibilities discussed above, DLGBOX must be subclassed. In the mgjority of
cases thiswill involve no more than supplying replacements for one or both of thedl _dyn_i ni t and
dl _key methods.

Dynamically initialised dialogs
Thedl _dyn_i ni t methodis intended to be used for setting the initial values of dialog box controls
dynamically, as opposed to the static initialisation, from datain aresource file, used by simple dialogs.

Suppose, for example that an application needsto use adialog, similar to the one described earlier, but able
to display one of two alternative text messages. Such adialog might use two string resources and adialog
resource as follows:

RESOURCE STRI NG dial _nsg_1 { str="Message one"; }
RESOURCE STRI NG di al _nsg_2 { str="Message two"; }

OBJECT ORIENTED PROGRAMMING GUIDE

RESOURCE DI ALOG nessage_di al og
control s=
{
CONTROL /* the title */

{

cl ass=C_TEXTW N;

f1 ags=DLGBOX_| TEM _CENTRE| DLGBOX_| TEM _DEAD| DLGBOX_| TEM_UNDERLI| NED;
i nf o=TXTMESS

{
f1 ags=l N_TEXTW N_AL_CENTRE;

str="Dialog title";

b
1
CONTROL /* the nessage */

{

cl ass=C_TEXTW N;

fl ags=DLGBOX_| TEM_CENTRE| DLGBOX_| TEM_DEAD;
i nf o=TXTMESS

{
f1 ags=l N_TEXTW N_AL_CENTRE;

b
},
CONTROL

{
cl ass=C_ACLI ST,;
i nf o=ACLI ST

{
ri d=- SYS_AC_CONTI NUE;
b

}

Note that the control that isto contain the message does not specify a message, and so has the default of
an empty string, since the message text is always replaced.

In addition, this dialog resource uses an alternative way of specifying the dialog title, compared with the
previous example. Although it takes up afew more bytes than in the previous case, it allows the possibility
for thetitle to be left as the default empty string in cases where, for example, the dialog titleitself isto be
generated.

The dialog could subclass DLGBOX as follows:
CLASS msgdi al dl gbox

{
REPLACE dl _dyn_init
}

with the corresponding message function to set the message text:

METHOD VOI D nsgdi al _dl _dyn_init (PR_MSGDI AL *sel f)

{
I NT flag;
TEXT buf [40];

flag=*(WORD *)sel f->dl gbox. r buf;
hLoadResBuf (f1 ag?Dl AL_MSG _1: DI AL_MSG 2, &uf[0]);
hDl gSet Text (1, &uf[0]);

This method uses the dialog utility functionhDI gSet Text to set thetext for the TEXTWIN item with index
number 1 (the message). This function, which is described in the Dialog box utilities section of the HWMM
Utility Functionschapter, assumes that the dialog's handleis stored inDat Di al ogPt r. Thus, in contrast
with the previous example, the resource for this dialog must not set the DLGBOX_NO_DDP flag.

In this case, the flag to select the required message string is passed to the dialog code in the dialog box
result buffer. A possible means of running thisdialogis:

7 DIALOGS

LOCAL_C I NT RunMessageDIl g(I NT fl ag)

{
WORD result;
DL_DATA dat a;

resul t =fl ag;

dat a. i d=SI MPLE_DI ALOG;

dat a. r buf =&resul t;

dat a. pdl g=NULL;

hLaunchDi al (CAT_MYAPP_MYAPP, C_MSGDI AL, &dat a) ;
return(result);

On completion of the dialog, the WORD pointed to by dat a. r buf (thatis, resul t) will be overwritten, asin
the previous example, with avalue indicating how the dialog was terminated.

A dialog that needsto dynamically initialise several controls may use the above technique with a

dl gbox. r buf that pointsto astructure containing theinitialisation datafor all the controls, although this
may require a considerable amount of code to set up the data. An alternative would be to allow the

dl _dyn_i ni t method to obtain its data directly from other objects (ideally, via sensing methods) or from
static variables. A possible technique isto use the result buffer pointer to point to a particular structure,
which may bein the property of some other object. The method chosen in a particular circumstance may
depend on the trade-off between such factors as the amount of code needed, the clarity of the code and the
preservation of modularity.

Retrieving dialog results

In general, itis not sufficient merely to know which keypress caused the dialog to terminate. Most dialogs
gather information from the user and this information must be communicated to the rest of the application.
Such adialog will generally set DLGBOX_RBUF_FI LLED indl gbox. f | ags, to prevent system code from
writing to* dl gbox. r buf . The dialog may then safely write its own specific resultsto that location. The
collection of the resultsis normally done by areplacementdl _key method.

Thedl _key method iscalled from thewn_key method when the dialog box is potentially about to terminate,
in the following circumstances:

when the keypressw KEY_RETURN is received, providedd! gbox. f | ags contains
DLGBOX_NOTI FY_ENTER, but not DLGBOX_ACT| ON_LI ST or DLGBOX_SMALL_ACTI ON_LI ST

when the keypressw KEY_ESCAPE isreceived, providedd! gbox. f | ags contains
DLGBOX_NOTI FY_ESCAPE

the dialog contains an action list, dI gbox. f | ags contains DLGBOX_ACTI ON_L| ST (or
DLGBOX_SMALL_ACTI ON_LI ST) and a keypress matches one of the buttonsin the action list

for all keypresses, provided the dialog contains an action list anddl gbox. f | ags contains
DLGBOX_NOTI FY_ALL_ACT aswell asDLGBOX_ACTI ON_LI ST (or DLGBOX_SMALL_ACTI ON_LI ST)

A typical dl _key method will sense the datain one or more of the dialog's component controls, write this
datainto a buffer or structure pointed to by dl gbox. r buf and return WN_KEY_CHANGED. The choices
available for transferring information to other objects within the application are similar to those already
discussed for thedl _dyn_i ni t method.

The method may test the keypress that caused it to be called, sincethisis passed as a parameter. It may, as
aresult of thistest - or of other tests on the values of one or more component controls- return the value
WN_KEY_NO_CHANGE to indicate that the dialog box should not be terminated.

Dialogs with and without "WAIT'

By default, the WSERV ws_do_di al method (and hencethehLaunchDbi al utility function) will not return
until the dialog terminates and the dialog box has been destroyed.

The processing of the dialog's results may therefore be divided between the dl _key method (which could,
in this case, be viewed as asimple collector of the data) and code that immediately follows acall to, say,
hLaunchDi al . Most of the system-supplied dialogs use this technique since it allows application-specific
code to follow the generic processing performed in the dialog'sdl _key method.

If dl gbox. f | ags containsDLGBOX_NO_WAI T, thews_do_di al method (andhLaunchDi al) will return as
soon asthe dialog is launched, rather than waiting until the dialog is destroyed. In such a case none of the
processing of the dialog completion can be performed by code following acall to, say, hLaunchDi al , since

7-21

OBJECT ORIENTED PROGRAMMING GUIDE

thedialog is still running at that time. All the completion processing must be donein thedialog'sd! _key
method.

Although thistechnique is more difficult to handle, it does have a number of advantages for the application
writer, one of the more significant being that it isless expensive in terms of stack use.

Controlling the width of a dialog

Thewidth of adialog isnormally set - following itsinitialisation and before it is made visible, in the
dl _set _si ze method - so that it exactly fitsthe widest of its components. In cases where the size of a
component may vary after the dialog becomes visible, this may not be adequate.

An example of such asituation would be a dialog containing a centred text message that shows a page
count used, say, to report the progress of document printing. The message may have to display page
numbers up to 999, but would normally start at page 1. If the dialog box width is determined for theinitial
message "Page 1", it may be too narrow to display "Page 999". Two possible solutions are described below.

If the maximum width of an item can be easily determined, the dialog can be forced to the required width by
replacing thed! _i ng_mi nsi ze method. Using the above example, the dialog resource could contain the
following initialisation data for a page count control:

CONTROL
{
cl ass=C_TEXTW N;

f1 ags=DLGBOX_| TEM_CENTRE| DLGBOX_| TEM_DEAD;
i nf o=TXTMESS

{
f1ags=I N_TEXTW N_AL_CENTRE;

str="Page 1";
};
b

A suitabled! _i nq_mi nsi ze method could be of the form:

METHOD VO D nydl g_dl _inqg_m nsi ze(PR_MYDLG *sel f, | NT *pCent, | NT *pPnpt, | NT
*pCtl);

*pCent =gText W dt h(\Ws_FONT_SYSTEM G_STY_NORMAL, " Page 999", 8);

An aternative solution isto replace thedl _set _si ze method itself. In the present example thisis possibly
abetter solution, sinceit reuses the code used el sewhere to set the page number. In this case the resource
fileinitialises the control to its maximum size:

CONTROL
cl ass=C_TEXTW N;

f1 ags=DLGBOX_| TEM CENTRE| DLGBOX_| TEM DEAD;
i nf 0=TXTMESS

{
flags=l N_TEXTW N_AL_CENTRE;
str="Page 999";

b

Assuming that this control immediately follows adialog title (that is, it has an index number of 1) and that
the resource file also contains a string resource of the form:

RESOURCE STRI NG page_num str {str="Page %";}

the required code could then be;

7 DIALOGS

LOCAL_C VO D Set Page(| NT pagenum)
{
TEXT buf[10];
hAt os(&uf [0] , PAGE_NUM_STR, pagenum ;

hDIl gSet Text (1, &wuf[0]);
}

#pragma METHOD_CALL

METHOD VO D nydl g_dl _set_size(PR_MYDLG *sel f);

{
p_supersend2(sel f,O DL_SET_SIZE); /* sets width for |argest case */
Set Page(1); /* now set initial page nunber value */

On first being made visible the dialog displays the text "Page 1" but is wide enough to display "Page 999".
Subdialogs

A dialog box may contain one or more items that can 'explode’ into a separate subdial og, displayed over the
main dialog. An example isthe Marginsline of the Print setup dialog as used, for example, in the Word
application. The CONTROL resource for thisdialog item isas follows:

CONTROL
cl ass=C_TEXTW N;
pronpt =" Mar gi ns" <Ws_SYMBOL_ELLI PSI S>;

i nf o=TXTMESS
{

str=""
flags=lI N_TEXTW N_POPQOUT;
b

Thedialog is shown, with the Marginsitem highlighted, in the following diagram:

Print setup

‘Page size...

‘Header...

‘Footer...

‘Paging control... 1,No, 1,23
‘Printer model.. Canon B.J-18e
‘Printer device... Plis

The significant points about the above CONTROL resource are that the control is an instance of the TEXTW N
classand that it isinitialised with thel N_TEXTW N_PoPOUT flag. By convention, the prompt (which isalso
an instance of TEXTW N) for such an item terminates with an ellipsis.

Thetext of the control, by convention, shows a summary of the current values of the information that may
be modified by the subdialog and should therefore be set dynamically, in either thedl _dyn_i ni t or the

dl _set _si ze methods. Which method is the most appropriate depends on the nature of the summary text
to bedisplayed. If it is of fixed width the resource text may be anull string (asit isin the above example) and
the replacement text may safely be setinthedl _dyn_i ni t method. If the summary text is of variable size,
the resource file should contain a string that is guaranteed to be the longest that can be displayed. Thistext
should bereplaced inthedl _set _si ze method, after supersending the DL_SET_SI ZE message, so that the
dialog is guaranteed to be wide enough. A CONTROL resource that uses this technique is shown below.

OBJECT ORIENTED PROGRAMMING GUIDE

CONTROL
cl ass=C_TEXTW N;

pronpt =" Font " <W5_SYMBOL_ELLI PSI S>;
i nf o=TXTMESS

{

st r =" MVMMVMMVMVWMVWVWMVWMWM 00" ; /* max font name + space + nmax font
size */

flags=l N_TEXTW N_POPOUT;

b

Thel N_TEXTW N_POPOUT flag ensures that the dialog item will respond to the Tab key by sending the
dialog aDL_LAUNCH_SUB message (and to any other key by displaying the SYS_POPOUT_HELP information
message which, in English, is"Press Tab to change thisitem"). The main dialog'sdl _| aunch_sub method
launches the subdial og in exactly the same way as any other dialog islaunched, that is by means of either
the window server object'sws_do_di al met hod, or thehLaunchDi al utility function. The following
diagram illustrates the Margins subdial og launched from the Print setup dial og.

Print setup

: | Margins (inches)

. 1.25

‘Left 1.25
. ; ‘Right 1.25
5.1 | Bottom 1.25

‘Printer device... Plis

A parameter todl _I| aunch_sub indicates which dialog item launched the subdialog. Note that this
parameter is one greater than the index number of the corresponding dialog item. When launching the
Margins subdialog, for example, this parameter has avalue of 2.

Processing within the subdialog is no different from that needed for amain dialog. On completion of the
subdialog, the return to the main dialog is handled automatically by system code.

CHAPTER 8

DIALOG CONTROLS

This chapter describes the use of the dialog controls provided by the HWIM object library. These controls
are used as components of dialog boxes, allowing awide variety of dialogs to be constructed. The following
diagram, for example, shows a simple dialog constructed from atitle and a prompted numeric editor control.

Position to-do entry

A control isimplemented as an instance of adialog control class: dialog control classes are not usually
subclassed since the base class usually provides sufficient functionality and flexibility for most dial ogs.
Dialog control classes ultimately subclass the LODGER class and thus inherit its property and methods.

Theinitial appearance and behaviour of adialog control are primarily determined by the (static) content of a
CONTROL resource (in the application resource file). They may be dynamically modified by an optional
WN_SET message sent fromthedl _dyn_i ni t method of the dialog box itself. The use of dynamic
initialisation allows the control to be modified to take into account the current state of the application (in the
above exampletheinitial value will have been set to correspond to the position of an item in the current to-
dolist).

The preferred method of sensing and setting a dialog control isto usethewn_sense andwn_set methods
of the dialog box, asin the following code fragment:

p_send4(Dat Di al ogPtr, O WN_SET, control _i ndex, pset)

Thecontrol isidentified by itsindex cont r ol _i ndex. It is passed a pointer, pset , to an appropriate
SE_XXX struct that holds the replacement data. The reserved static Dat Di al ogPtr isassumed to point to
the dialog; an assumption that is made throughout this chapter. It will always be true unless the dial og that
ownsthe control setsthe PR_W N_NO _DDP flag initswi n. f | ags property (see the Dialogschapter for
further details).

The alternative method of sensing/setting adialog control isto use thewn_sense andwn_set methods of
the particular dialog control, asin the following example code fragment.

PR_LODGER *hand;

hand=(PR_LODGER *) p_send3(Dat Di al ogPtr, O DL_I NDEX_TO_HANDLE, contr ol _i ndex)
p_send3(hand, O WN_SET, pset)

Thefirst method is clearly preferable.

On termination of adialog, the associated data can be sensed by means of awn_sense method call from
withinthedialog box dI _key method. Thisisthe normal practice for any but the simplest of dialogs.

The HWIM object library also includes some convenient utility functions that can perform the more
common dialog control sensing and setting actions. The full set of available functionsis described in the
Dialog box utilities section of the HWIM Utility Functionschapter.

Each type of component control has an associated SE_XXX struct, used for both setting and sensing the
control'sdata. In almost all cases the control allows selective setting of its data: which items of datathat are
set is determined by the value of aflagsfield in the appropriate SE_xXX struct. The flags field has no effect
on sensing: thewn_sense method always senses all relevant data.

OBJECT ORIENTED PROGRAMMING GUIDE

Text windows
The textwin.g header file should be included when using atext window control.

A TEXTW N text window control iswidely used to provide dialog titles, prompts for controls, and simple
messages (and exceptionally to launch sub-dialogs).

Hello
message

The above dialog could be created with the following DI ALOG resource.

RESOURCE DI ALOG denpdl g

title="Hello";
flags=0;
control s=

{
CONTROL

{

cl ass=C_TEXTW N;

fl ags=DLGBOX_| TEM_CENTRE| DLGBOX_| TEM_DEAD;
i nf o=TXTMESS

{
flags=l N_TEXTW N_AL_CENTRE;
str="message";

b

|
}

Thefirst item inthisdialog isthetitle and is specified by the resourceline.
title="Hello";
This creates an underlined centred item, with index zero, displaying the appropriate text.

Notethat thetitleis, in fact, smply aTEXTW N control with index zero. The above lineis exactly equivalent
to including the following CONTROL resource as the first itemin the dialog:

RESOURCE CONTROL denonstration

{

cl ass=C_TEXTW N;

f | ags=DLGBOX_| TEM_CENTRE| DLGBOX_| TEM DEAD| DLGBOX_| TEM UNDERLI NED;
i nf o=TXTMESS

{
f1ags=I N_TEXTW N_AL_CENTRE;

str="Hello";
b
}

Asaresult the title can easily be replaced dynamically using the hDI gSet Text utility function called from
within, say, thedl _dyn_i ni t method of thedialog.

The second item in the denod! g resource is asimple text window and is specified by the CONTROL struct:

CONTROL

{
cl ass=C_TEXTW N;

f1 ags=DLGBOX_| TEM CENTRE| DLGBOX_| TEM DEAD;
i nf 0=TXTMESS

{
flags=l N_TEXTW N_AL_CENTRE;
str="message";
i
}

wherethel N_TEXTW N_AL_CENTRE flag ensures that the text is centred within the control. Note also the
DLGBOX_I TEM_CENTRE flag that ensures that the control itself is centred within the dialog.

8 DIALOG CONTROLS

A TEXTW N control can aso have a prompt as shown in the following example.

[Hello
Prompt message

Thisdialog could be specified with the following resource:

RESOURCE DI ALOG denodl g

{
title="Hello";
flags=0;
control s=
{
CONTROL
cl ass=C_TEXTW N;
f1 ags=DLGBOX_| TEM _DEAD,;
pronpt =" Pronpt";
i nf o=TXTMESS
{
flags=lI N_TEXTW N_AL_CENTRE;
str="message";
b
}
b
}

Asinthis example, thetext of aprompt is specified by aline of the form:
pronmpt ="Pronpt";

Thetext of aprompt isleft aligned automatically, and is normally preceded by abullet symbal , to indicate
that the content of the corresponding control can be modified. The bullet symbol can be removed
permanently by setting the DLGBOX_I TEM DEAD flag.

Specifying prompt text does not necessarily mean that the prompt will appear. If, in addition to a prompt, a
control also has the DLGBOX_I| TEM_CENTRE flag set (asin the earlier example) the prompt will be
suppressed. Thisis, however, an abnormal case and is not arecommended technique, since it can lead to
unexpected behaviour. A dialog set up in thisway, and with the DLGBOX_I TEM _DEAD flag |eft clear, hasthe
rather strange appearance shown in the following diagram.

Hello

{message

By initialising atext window used as dialog box control with the | N_TEXTW N_POPOUT flag, it may be used
to trigger asubdialog, as described in the previous chapter.

Initialisation

Theinitial content and appearance of atext window control are specified by means of a TXTMESS resource
struct:

STRUCT TXTMESS

{

WORD f | ags=0;
TEXT str="";
}

Thestr element specifiestheinitial text andf | ags may contain any sensible OrRed combination of:

I N_TEXTW N_AL_LEFT aign text left
I N_TEXTW N_AL_RI GHT align text right

I N_TEXTW N_AL_CENTR centretext
E

I N_TEXTW N_BOLD text in bold typeface
I N_TEXTW N_POPOUT launch a subdialog on receipt of a Tab key

OBJECT ORIENTED PROGRAMMING GUIDE

Setting
The SE_TEXTW N struct is used for setting and sensing text window property.

typedef struct

{

I NT fl ags;
UWORD st at e;
TEXT *buf;
UWORD | en;

} SE_TEXTW N;

When setting atext window, a sensible combination of the following values should be ORed into the flags
field, to indicate which aspects are to be set (or cleared).

SE_TEXTW N_ALI GN setting or clearing an alignment flag
SE_TEXTW N_BOLD setting or clearing the bold typeface flag
SE_TEXTW N_TEXT setting the text

For each flag that isnot set, the corresponding datawill not be changed by thewn_set method.

If setting the text, a pointer to the replacement text must be written to* buf and the length of the text must
be written tol en.

Any sensible combination of the following flags may be placed in thest at e element:
PR_TEXTW N_AL_LEFT text isleft aligned
PR_TEXTW N_AL_RI GHT textisright aligned

PR_TEXTW N_AL_CENTR textiscentred
E

PR_TEXTW N_BOLD textisin abold typeface

The following example sets, for the item with item number i ndex (assumed to be atext window) the text to
the string pointed to by st r . It also clears any PR_TEXTW N_BOLD flag and setSPR_TEXTW N_AL_RI GHT
(clearing PR_TEXTW N_AL_LEFT and PR_TEXTW N_AL_CENTRE in the process). No other flags that may
exist in the text window's property are affected.

LOCAL_C VO D Set Text Wn(I NT i ndex, TEXT *str)
{
SE_TEXTW N set ;

set. fl ags=SE_TEXTW N_TEXT| SE_TEXTW N_AL| GN| SE_TEXTW N_BOLD;

set.state=PR_TEXTW N_AL_RI GHT; /* PR_TEXTW N BOLD is not set, so will be
cleared */

set. buf =str;

set.l en=p_slen(str);

p_send3(Dat Di al ogPtr, O WN_SET, i ndex, &set);

}

Itisrarefor application code to set more than the text of an instance of TEXTW N used as adialog box
component. In such acasethehDI gSet Text utility function may be used. As mentioned earlier, this utility
function can also be used to replace the text of thetitle by passing an index of zero.

The text window's flags are generally either set oninitialisation (usually from I N_TEXTW N_XXX values set
in aresource item) or are set or cleared by system code (see, for example, the DLGBOX dl _i t em | ock and
dl _i t em di mmethods).

Sensing

Sensing atext window writes a pointer to the text and the text length to the buf and| en elements of an
SE_TEXTW N struct. It does not provide any information about the text window's state flags. A typical call is
asfollows:

SE_TEXTW N set;

p_send3(Dat Di al ogPtr, O WN_SENSE, i ndex, &set);

8 DIALOG CONTROLS

A text window must not be sensed if it contains no text.

Choice lists

The chlist.g header file should be included when using a choice list control.

A choicelist dialog control presentsthe user with alist of choiceitemsonly one of whichisvisible and
hence selected. The selection can be changed by the following means:

using the left and right arrow keys
using first letter matching
via a pop-out expanded view obtained with the tab key

or optionally, viaincremental matching with a sequence of key presses (the control must be specialy
configured to allow incremental matching by use of the appropriate flag - see below).

In the following two illustrations a dialog containing three choice lists is shown. In the right hand picture
the user has pressed the Tab key to obtain the pop-out expanded view for the first, highlighted, choicelist.

Style for entry Style for entry

+No+ UNol

Italic Mo JItalic Yes
‘Underline Mo ‘Underline T™O

A choicelist control, allowing the user to select one of four presidents of the United States, could be
defined with the following two resources:

RESOURCE MENU presi dents

{

itenms=
{
CHOl CE_I TEM {str="Kennedy"};
CHOl CE_I TEM {str="Johnson"};
CHOl CE_I TEM {str="Ni xon"};
CHOl CE_I TEM {str="Ford"};
}

}

RESOURCE CONTROL denonstration

cl ass=C_CHLI ST;

f1 ags=DLGBOX_| TEM _NOTI FY_CHANGED;
pronpt =" Presi dent";

i nfo=CHLI ST{ri d=presidents;};

}

In this case, the dialog control would initially display "Kennedy", surrounded by a pair of little arrows, to
theright of the "President” prompt.

Initialisation

The CHLI ST resource struct specifiestheinitial content and appearance of a choicelist:
STRUCT CHLI ST

{

LI NK ri d=0;
BYTE nsel =0;
BYTE fl ags=0;
}

Theri d element identifies the MENU resource that contains the list of selections as an array of
CHOl CE_| TEMStructs:

OBJECT ORIENTED PROGRAMMING GUIDE

RESOURCE MENU exanpl e_nmenu
{

items=

{

CHOl CE_I TEM {str="zero";}
CHOl CE_I TEM {str="one";}
CHOI CE_I TEM {str="two";}
b
}

The CHO CE_I TEMstructs areindexed according to the order in which they arelisted in the MENU resource.
Thusthefirst hasindex zero, the second has index one, and so on. Inhwim.rh the CHOl CE_I TEMstruct is
defined asfollows:

STRUCT CHOI CE_I TEM /* choice list item™*/
BYTE {
TEXT str=""; /* identification text */

}

Thensel element of aCHLI ST resource struct specifies the index number of theinitially selected item.

Thef | ags element may optionally containthel N_CHLI ST_I NCREMENTAL flag, to allow choice list
selection to be made using incremental key matching. Note that this option can not be set dynamically.

Setting
A choicelist is set by passing a pointer to an SE_CHLI ST struct to thewn_set method

typedef struct

{
UWORD set _fl ags; /* which fields are significant */
PR_VAROOT *dat a; /* pointer to array containing data */
UWORD nsel ; /* index of current item*/
} SE_CHLI ST;

The property to be set isindicated by oRing one or more of the following flagsinto the flags field of the
above struct.

SE_CHLI ST_NSEL the index of the current item isto be set.

SE_CHLI ST_DATA the dataisto be replaced. The replacement datais astring array - see
variable arraysin the OLIB Reference manual.

SE_CHLI ST_RETAI N data should not be destroyed on destruction of the choice list control - once
set this flag cannot be cleared.

The content of achoice list can be set dynamically, say, from the dialog'sdl _dyn_i ni t method. However,
changing the content of a choice list once the dialog has become visible is not recommended, since the
width of the dialog box is set on initialisation. If the choice list content must be replaced, then care should
be taken to ensure that the text does not become too wide for the dialog box to display.

Sensing

A choicelist is sensed by passing a pointer to an SE_CHLI ST struct to thewn_sense method. The
SE_CHLI ST struct is defined above. Bothnsel anddat a are sensed.

Push buttons and action lists

The aclist.g header file should be included when using an action list control.

An action list control presents the user with a horizontal list of one or more push-button options, as
illustrated in the following diagram:

8 DIALOG CONTROLS

Alarm details
+Yes+
‘Time before AH#:A5
‘Alarm at H5:55 pm

‘Days previous H
Sound Leloup

Test sound Confirm

(Menu | [Enter]

Thisaction list consists of the two buttons, and their accompanying labels " Test sound" and "Confirm",at
the bottom of the dialog (note that the action list must either be the last of a series of controls, or it must
appear on itsown).An action list, allowing the user to select either Yesor No, could be defined with the
following resource:

RESOURCE ACLI ST_ARRAY yes_or_no
{

button=

{

PUSH_BUT
{
keycode=-"'n";
str="No",
b,

PUSH_B
{
keycode="y";
str="Yes",

}
}s

The push-button is defined by atext stringst r that appears above the button, and akeycode indicating
the key to be pressed by the user. For non-special keys, the uppercased key symbol will appear on the
push-button. For special keys, the keycode is conveniently specified by a symbolic constant. The symbolic
constants, and the text that will appear on the push-button, are as follows:

W KEY_RETURN "Enter"

W _KEY_ESCAPE "Esc"

W KEY_DELETE_LEFT "Dd"

W _KEY_SPACE " Space”

W KEY_UP <WS SYMBOL_UP KEY>

W _KEY_DOWN <WS SYMBOL_DOWN_KEY>
W KEY_RI GHT <WS SYMBOL_RIGHT_KEY>
W KEY_LEFT <WS SYMBOL_LEFT_KEY>
W KEY_TAB "Tab"

W KEY_MENU "Menu"

For example, the leftmost button in the dial og, illustrated above, could be defined with the following
PUSH_BUT resource.

RESOURCE PUSH _BUT test_sound_button

{
keycode=W KEY_MENU,
str="Test sound";

}

A negative keycode (asin an earlier example) indicates that the escape key can aso be used to obtain the
same effect (note that thisis not possibleif the escape key has already been assigned). Theyes_or _no
resource, defined earlier, could be used to create adial og, asking the user to press'y' or 'n', asfollows:

OBJECT ORIENTED PROGRAMMING GUIDE

RESOURCE DI ALOG get _answer

title="Accept changes ?"
f | ags=DLGBOX_NOTI FY_ESCAPE| DLGBOX_RBUF_FI LLED;
control s=

{
CONTROL

{
cl ass=C_ACLI ST;
i nf o=ACLI ST

{
ri d=yes_or _no;

b

|
}

The same effect could be obtained by using the SYS_AC_NO_YES resource defined in the system resource file.

There isan alternative form of the above action list, which is useful when spaceisat a premium, as
illustrated in the following diagram.

((E)End (R)Replace (S)Skip (A)All)

Asin this case, the compact, or small, action listis not usually accompanied by any other controls.

A small action list uses the same ACLI ST_ARRAY resource as the standard action list. The example given
above, yes_or _no, could be used to create a dialog consisting of asmall action list, and no other controls,
asfollows:

RESOURCE DI ALOG get _answer

{
fl ags=PR_W N_FORCE_BOTTOM
control s=

{
CONTROL

{
cl ass=C_SMACLI ST;
i nf o=ACLI ST

{
rid=yes_or_no;

b

b
}

The only difference, between the dialog resources for the two action lists, isthe class: the standard action
list is aninstance of the ACLI ST class whereas the small action list is an instance of the SMACLI ST class.

Initialisation
The appearance and behaviour of apush button are specified with aPUSH_BUT resource.

STRUCT PUSH_BUT
BYTE {
WORD keycode;
TEXT str; /* text associated with button */

}

One or more buttons are in turn collected into an array: the first button in the array has index zero, the
second hasindex one, and so on. The first button will appear on the far left of the control.

STRUCT ACLI ST_ARRAY rid

{
LEN BYTE STRUCT button[]; /* array of push_buttons */

}
Thisarray isincluded asadialog control by means of the ACLI ST struct.
STRUCT ACLIST /* Initialising struct for action list */

{
LINK rid;
}

8 DIALOG CONTROLS

The resources are the same for both the standard and the small action lists.

There are no flags associated with this control, since there is nothing to change on initialisation, or via
setting.

Setting and sensing

Thereis nothing that can usefully be set or sensed.

Edit boxes

The edwin.g header file should be included when using an edit box control.

An edit box control presents an editable string which may be wholly or partially visible. A wide range of
options are available for customising this control: see the resources section. In the following example an edit
box is displaying "rabbit burrow".

Find
rabhit burrow

‘Direction Forwards
‘Case sensitive Mo

An edit box control accepting up to 40 characters, including tabs, with 20 visible at any one time could be
created using the following resource:

RESOURCE CONTROL

{
cl ass=C_EDW N;
pronpt="string";
i nf o=EDW N

{

str="";
flags=I N_EDW N_VULEN_CHARACTERS| | N_EDW N_ACCEPT_TABS;
max| en=40;
vul en=20;
b
}

Initialisation

Theinitial content and appearance of an edit box are specified by an EDW N resource struct.
STRUCT EDW N /* edit box */

WORD vul en; /* ignored unless either _VULEN_ flag set */
WORD f | ags=0;

WORD max| en;

TEXT str="";

}
where max| en specifies the default edit box width, and the maximum length of string that may be edited.

The behaviour of an edit box is specified by ORing one or more of the following flagsinto thef | ags member
of the EDW N struct.

| N_EDW N_DI ALLABLE indicates that the edit box should accept the telephone symbol viathe
shift+dial key combination.

| N_EDW N_ACCEPT_TABS indicates that the edit box should accept tabs.

I N_EDW N_AUTO_CUR_END indicates that the text, when first displayed, is not to be highlighted and

that the cursor isto be placed at the rightmost position.

I N_EDW N_NO_AUTOSELECT indicates that the text, when first displayed, is not to be highlighted and
that the cursor isto be placed at the leftmost position.

OBJECT ORIENTED PROGRAMMING GUIDE

I N_EDW N_VULEN_CHARACTERS indicatesthat the width of the edit box is specified, in characters, in
member vul en of the EDW N struct.

I N_EDW N_VULEN_PI XELS indicates that the width of the edit box is specified, in pixels, in member
vul en of the EDW N struct.

Setting
The SE_EDW N struct is used for setting an edit box.
struct
{
TEXT *buf;
UWORD | en;
} SE_EDW N;
The following code fragment demonstrates the setting of an edit box, assumed to be the item with index 2:
SE_EDW N set ;
set. buf ="Text";
set .| en=4;
p_send4(Dat Di al ogPtr, O WN_SET, 2, &set);
Sensing

The SE_EDW N struct defined above is also used for sensing an edit box. The following code fragment
demonstrates the sensing of an edit box:

SE_EDW N sense;

p_send4(Dat Di al ogPtr, O WN_SENSE, 2, &sense) ;

LONG numeric editor

The ncedit.g header file should be included when using along numeric editor control.

A long numeric editor control presents an editable long integer value. In the following diagram, the long
numeric editor control has a current value of five hundred thousand.

Demonstration

'LONG jg~HHHHA

A numeric editor control could be created using the following resource:

RESOURCE CONTROL

{
cl ass=C_LNCEDI T;
pronpt ="LONG";
i nf o=LNCEDI T
{
| ow=1;
hi gh=700000;
current =500000;
3
}

Initialisation

Theinitial content of along numeric integer is specified by means of anLNCEDI T resource struct.

STRUCT LNCEDI T /* long number edit box */

{

LONG current = 0;

LONG | ow = 0; /* | owest allowed val ue */
LONG hi gh = 10000000; /* highest allowed value */
}

wherethecur rent value may not be lessthan! ow or greater thanhi gh.

8 DIALOG CONTROLS

Setting
The SE_LNCEDI T struct is used for setting along integer numeric editor.

typedef struct

{

LONG val ue;
LONG | ow,
LONG hi gh;
UWORD f 1 ags;
} SE_LNCEDI T;

The property to be set isindicated by ORing one or more of the following flagsinto thef | ags field of the
above struct

SE_LNCEDI T_VALUE indicates that the current value is to be set
SE_LNCEDI T_LOW indicates that the lower limit isto be set
SE_LNCEDI T_HI GH indicates that the upper limit isto be set

Thefollowing code fragment illustrates the setting of along integer numeric editor:
SE_LNCEDI T set;

set. fl ags=SE_LNCEDI T_VALUE| SE_LNCEDI T_HI GH;
set.val ue=100;

set. hi gh=50000;

p_send4(Dat Di al ogPtr, O WN_SET, 4, &set);

Sensing

A pointer to aLONGis used for sensing the currentval ue. Thel owand hi gh values can not be sensed.
The following code fragment demonstrates the sensing of along numeric editor:

LONG val ue;

p_send4(Dat Di al ogPtr, O WN_SENSE, 4, &val ue);

Integer numeric editor

The ncedit.g header file should be included when using an integer numeric editor control.

An integer numeric editor control presents an editable unsigned integer value. In the following diagram the
integer numeric editor has a current value of one.

Position to-do entry

An integer numeric editor control could be created using the following exampl e resource:

RESOURCE CONTROL

{

cl ass=C_NCEDI T;

pronpt =" Nunmber of cars"
i nf o=NCEDI T

{
| ow=0;
hi gh=6;
current =4;
b

}

Initialisation
Theinitial content of an integer numeric editor are specified by means of anNCEDI T resource struct:

OBJECT ORIENTED PROGRAMMING GUIDE

STRUCT NCEDI T /* UWORD number edit box */

{

UWORD current = 0;

UWORD | ow = O; /* | owest allowed val ue */
UWORD hi gh = 65535; /* highest allowed val ue */

}

wherethecur rent value may not be lessthan| ow or greater thanhi gh.

Setting
The SE_NCEDI T struct is used for setting an integer numeric editor.

typedef struct
{
UWORD val ue;
UWORD | ow;
UWORD hi gh;
UWORD f | ags;
} SE_NCEDI T;

The property to be set isindicated by ORing one or more of the following flagsinto thef | ags field of the
above struct.

SE_NCEDI T_VALUE indicates that the current value is to be set.
SE_NCEDI T_LOW indicates that the lower limit isto be set.
SE_NCEDI T_HI GH indicates that the upper limit isto be set.

The following code fragment demonstrates the setting of an integer numeric editor:
SE_NCEDI T set;
set. fl ags=SE_NCEDI T_VALUE| SE_NCEDI T_HI GH;
set. hi gh=100;
set.val ue=10;
p_send4(Dat Di al ogPtr, O WN_SET, 4, &set);
Sensing

A pointer to aUWORD is used for sensing the currentval ue. Thel owand hi gh values can not be sensed.
The following code fragment demonstrates the sensing of an integer numeric editor:

UWORD val ue;

p_send4(Dat Di al ogPtr, O WN_SENSE, 4, &val ue) ;

WORD numeric editor

The ncedit.g header file should be included when using aword numeric editor control.

A word numeric editor control presents an editable signed integer value. In the following example the word
numeric editor has a current value of minus one hundred.

Maontreal

*Temperature

A word numeric editor control could be created using the following resource:
RESOURCE CONTROL

cl ass=C_WNCEDI T;
pronpt =" Tenper at ure”
i nf o=VNCEDI T

{

current=-100;

b

8 DIALOG CONTROLS

Initialisation

Theinitial content and appearance of aword numeric editor are specified by means of aWNCEDI T resource
struct:

STRUCT WNCEDI T /* nunmeric control edit box (signed words) */
{
WORD current = O0;
WORD | ow = -32768; /* |owest allowed val ue */
WORD hi gh = 32767; /* highest allowed value */
}

wherethecur rent value may not belessthan! ow or greater thanhi gh.

Setting
The SE_WNCEDI T struct is used for setting the word numeric editor.

typedef struct
{
WORD val ue;
WORD | ow,
WORD hi gh;
WORD f | ags;
} SE_WNCEDI T;

The property to be set isindicated by ORing one or more of the following flagsinto thef | ags field of the
above struct.

SE_WNCEDI T_VALUE indicates that the current value isto be set.
SE_WNCEDI T_LOW indicates that the lower limit isto be set.
SE_WNCEDI T_HI GH indicates that the upper limit isto be set.

The following code fragment demonstrates the setting of aword numeric integer:
SE_WNCEDI T set ;

set. fl ags=SE_WNCEDI T_VALUE| SE_WNCEDI T_LOW
set. | ow=4;

set.val ue=10;

p_send4(Dat Di al ogPtr, O WN_SET, 3, &set);

Sensing

A pointer to aWoRD is used for sensing the currentval ue. Thel owand hi gh values can not be sensed.
The following code fragment demonstrates the sensing of aword integer numeric editor:

WORD val ue;

p_send4(Dat Di al ogPtr, O WN_SENSE, 3, &val ue);

Range numeric editor
Thergedit.g header file should be included when using arange numeric editor control.

A range numeric editor control presents two editable unsigned words specifying upper and lower values of
arange. In the following example arange numeric editor is shown with alower value of thirty and an upper
value of sixty.

Define

A range numeric editor control could be defined using the following resource:

OBJECT ORIENTED PROGRAMMING GUIDE

RESOURCE CONTROL

{

cl ass=C_RGEDI T;
pronpt =" Age range";
i nfo=RGEDI T

{
val ue_1=100;
val ue_2=200;
b

}

Initialisation

Theinitial content of arange numeric editor is specified by means of an RGEDI T resource struct:

STRUCT RGEDI T
{

/* range editor */

WORD | ow=1; /* | owest allowed value */

WORD val ue_1=1; /* | ower value of range */
WORD val ue_2=9999; /* higher value of range */

WORD hi gh=9999; /* highest allowed val ue */

}

whereval ue_1 must be less than or equal toval ue_2 and both values may not be less than| ow or greater
than hi gh.

Setting
The SE_RGEDI T struct is used for setting the range numeric editor.

typedef struct

{

UWORD val ue[4] ;

UWORD f | ags;

} SE_RGEDIT;
Theval ue array isindexed asfollows:
| X_RGEDI T_LOW index of lower limitinval ue array.
| X_RGEDI T_VALUE_1 index of lower current valueinval ue array.
I X_RGEDI T_VALUE_2 index of upper current valueinval ue array.
| X_RGEDI T_HI GH index of upper limitinval ue array.

The property to be set isindicated by ORing one or more of the following flagsinto the flags field of the
above struct.

SE_RGEDI T_LOW
SE_RGEDI T_VALUE_1
SE_RGEDI T_VALUE_2

SE_RGEDI T_HI GH

indicates that the lower limit isto be set.
indicates that the current lower value isto be set.
indicates that the current upper value isto be set.

indicates that the upper limit is to be set.

The following code fragment demonstrates the setting of arange numeric integer:
SE_RGEDI T set;
set . fl ags=SE_RGEDI T_VALUE_1| SE_RGEDI T_VALUE_2;
set. val ue[| X_RGEDI T_VALUE_1] =4;
set . val ue[| X_RGEDI T_VALUE_2] =10;
p_send4(Dat Di al ogPtr, O WN_SET, 2, &set);
Sensing

The SE_RGEDI T struct (see above) is used for sensing the range numeric editor: all four members of the
struct are sensed. The following code fragment demonstrates the sensing of arange numeric editor:

SE_RCGEDI T sense;

p_send4(Dat Di al ogPtr, O WN_SENSE, 2, &sense) ;

8-14

8 DIALOG CONTROLS

Floating point editor
The fltedit.g header file should be included when using a floating point editor control.

A floating point editor control presents an editable floating point number. In the following example two
floating point editors are shown with current values of 21.00 and 29.70.

Page size {cm)
‘Page size Custom

LJidth
‘Height Z29.7/8
‘Orientation Portrait

A floating point editor control could be defined using the following resource:

RESOURCE CONTROL

{

cl ass=C_FLTEDI T;

pronpt ="W dt h";

i nfo=FLEDI T
{
current =21. 00;
| ow=0. 0;
hi gh=40. 0;
ndec=2;
b

}

Initialisation
Theinitial content and appearance of afloating point editor are specified by means of anFLTEDI T resource
struct:

STRUCT FLTEDI T /* floating point edit box */

{

DOUBLE current =0. 0;

DOUBLE | ow =-9.9999999999e99; /* |ower bound */
DOUBLE hi gh =9.9999999999e99; /[/* upper bound */

BYTE vul en=5; /* width of editor in characters */
BYTE ndec=0; /* P_DTOB_GENERAL */
}

wherethecur rent value may not be lessthan| ow or greater thanhi gh. Thecurrent valueisdisplayed
to ndec decimal placesin abox of widthvul en characters. If ndec iszero, thecur rent valueisdisplayed
in general format as defined for the PLIB routine p_dt ob (see the Plib Reference manual).

Setting
The SE_FLEDI T struct is used for setting the floating point editor.

typedef struct

DOUBLE current; /* current value */
DOUBLE | ow, /* 1l ower bound */
DOUBLE hi gh; /* upper bound */

WORD set _fl ags; /* which fields to set */
} SE_FLTEDIT;

The property to be set isindicated by ORing one or more of the following flagsinto theset _f 1 ags field of
the above struct.

SE_FLTEDI T_CURRENT indicates that the current value isto be set.
SE_FLTEDI T_LOW indicates that the lower limit isto be set.
SE_FLTEDI T_HI GH indicates that the upper limit isto be set.

The following code fragment demonstrates the setting of afloating point numeric integer:

OBJECT ORIENTED PROGRAMMING GUIDE

SE_FLTEDI T set;

set.set flags=SE_FLTEDI T _VALUE| SE_FLTEDI T_LOW
set. | ow=4;

set.val ue=10. 3;

p_send4(Dat Di al ogPtr, O WN_SET, 2, &set);

Sensing

A pointer to aDOUBLE is used for sensing the cur r ent value. Thel owand hi gh values can not be
sensed. The following code fragment demonstrates the sensing of arange integer numeric editor:

DOUBLE current;

p_send4(Dat Di al ogPtr, O WN_SENSE, 2, &urrent);

Date/time editor
The dtedit.g header file should be included when using a date/time editor control.

The date/time editor presents either an editable date, an editable time or an editable duration. In the
following example the upper date/time editor is showing the time in am/pm format in hours, minutes and
seconds, the lower editor is showing the date.

Set time and date

[FE:28:83 pm
‘Date 11-18-1993

A date/time editor showing a duration of one hour and ten minutes could be defined using the following
resource:

RESOURCE CONTROL

{

cl ass=C_DTEDI T;
prompt="Time left";
i nfo=DTEDI T

{
flags=I N_DTEDI T_HHWM D
current =4200;
3
}

Initialisation

Theinitial content of adate/time editor is specified by means of aDTEDI T resource struct:

STRUCT DTEDI T /* combined date/tinme editor */

{

WORD f 1 ags;

LONG current;

LONG | ow; /* lowest allowed value */
LONG hi gh; /* highest allowed val ue */
}

wherethecur rent value may not be lessthan| ow or greater thanhi gh.

The content of the date/time editor is specified by assigning one of the following flags into the flags
member.

| N_DTEDI T_DDMMYYYY initialise as adate editor to display adate in day, month and year format: the
cur rent dateis specified as days elapsed since 1/1/1900.

| N_DTEDI T_HHMVSS initialise as atime editor to display atime as hours, minutes and seconds.
Thecurrent timeisspecified in seconds elapsed since midnight.

| N_DTEDI T_HHWM initialise as atime editor to display atime as hours and minutes. The
current timeis specified as seconds elapsed since midnight.

8 DIALOG CONTROLS

| N_DTEDI T_HHMVSS_D initialise asatime editor to display a duration as hours, minutes and
seconds. Thecur rent duration is specified in seconds.

| N_DTEDI T_HHWMM D initialise asatime editor to display aduration as hours and minutes. The
current duration is specified in seconds.

I N_DTEDI T_HHMMSS_ND initialise as atime editor to display anegative duration as hours, minutes
and seconds. Thecur rent duration is specified in seconds.

I N_DTEDI T_HHMM_ND initialise as atime editor to display a negative duration as hours and
minutes. Thecur r ent durationis specified in seconds.

Setting
The SE_DTEDI T struct is used for setting the date/time editor.

typedef struct
{
UWORD f | ags;
LONG val ue;
LONG | ow,
LONG hi gh;
} SE DTEDI T;

The property to be set isindicated by ORing one or more of the following flagsinto thef | ags field of the
above struct.

SE_DTEDI T_VALUE indicates that the current value isto be set.
SE_DTEDI T_LOW indicates that the lower limit isto be set.
SE_DTEDI T_HI GH indicates that the upper limit isto be set.

The following code fragment demonstrates the setting of a date/time editor:
SE_DTEDI T set;

set. fl ags=SE_DTEDI T_VALUE;
set.val ue=p_date();
p_send4(Dat Di al ogPtr, O WN_SET, 2, &set);

Sensing

A pointer to aSE_DTEDI T is used for sensing the currentval ue. Thel owand hi gh values can be sensed.
The following code fragment demonstrates the sensing of a date/time editor:

SE _DTEDI T sense;

p_send4(Dat Di al ogPtr, O WN_SENSE, 2, &sense) ;

The Latitude/Longitude editor

Thelledit.g header file should be included when using alatitude/longitude editor control.

A latitude/l ogitude editor presents either an editable latitude or an editable longitude. Both the | atitude and
the longitude are expressed in degrees and minutes followed by a single character specifying the cardinal
pointi.e. N, W, Sor E.

In the following exampl e the upper latitude/longitude editor is showing alongitude and the lower editor is
showing alatitude.

-

'Add city
Country Denmark
‘Longitude H18"18 E
‘Latitude A56°88 M

‘Area code
'GMT offset 1:H8
Jone European

OBJECT ORIENTED PROGRAMMING GUIDE

A latitude editor control that initially displayed 56° 8 N could be defined using the following resource:
RESOURCE CONTROL

{

class=C_LLEDI T;

flags=I N_LLEDI T_LATI TUDE;
pronpt ="Latitude";

i nfo=LLEDI T

{
val ue=3368;

b
}

Initialisation

Theinitial content and appearance of alatitude/longitude editor are specified by means of anLLEDI T
resource struct:

STRUCT LLEDI T /* lat long editor */

{

WORD f 1 ags; /* Latitude or |ongitude */
WORD val ue=0; /* The default value */
}

where the latitude/longitude val ue isin minutes of arc: a positive sign indicating alatitude/longitude in the
northern /western hemisphere, and a negative sign indicating a latitude/longitude in the southern /eastern
hemisphere. Thus-604 correspondsto alatitude of 10° 4 Sor alongitude of 10° 4E

The behaviour of alatitude/longitude editor is specified by assigning one of the following flags to the flags
member.

I N_LLEDI T_LATI TUDE display val ue asalatitude.
I N_LLEDI T_LONGI TUDE display val ue asalongitude.

Setting

The SE_LLEDI T struct is used for setting the | atitude/longitude editor.
typedef struct
il\ORD val ue;
} SE_LLEDIT;
Thefollowing code fragment demonstrates the setting of a date/time editor:
SE_LLEDI T set;

set.val ue=3368;
p_send4(Dat Di al ogPtr, O WN_SET, 2, &set);

Sensing

A pointer to an SE_LLEDI T struct is used for sensing the currentval ue. The following code fragment
demonstrates the sensing of a date/time editor:

SE_LLEDI T sense;

p_send4(Dat Di al ogPtr, O WN_SENSE, 2, &sense) ;

File name editor

Thefiles.g header file should be included when using a file name editor control.

A file name editor present the user with afile name that may be edited with the keyboard or with the pop-out
file selector (viathe Tab key). A wide range of optionsis provided for customising the behaviour of file
name editors: these options are described in the resources section below.

A file name editor is always supplied with a pack selector, that is placed immediately below, asin the
following example: the selector is specified by ORing the DLGBOX_NEEDS_PACK flaginto thef | ags member
of the CONTROL struct (see below).

8-18

8 DIALOG CONTROLS

Save icon as pic file

- Name JiF asel.pic|

* Disk Internal

A file name editor is commonly used when saving an edited file, for example adocument created with the
Word application. It isnot usually used for opening an already existing file for which afile name choice list
is better suited.

A file name editor control could be defined using the following resource:
RESOURCE CONTROL

{
cl ass=C_FNEDI T;
f | ags=DLGBOX_| TEM _NEEDS_PACK;

pronmpt="";
i nfo=FNEDI T

{
fl ags=1 N_FNEDI T_STANDARD;

fname="easel . pic";
s
}

Initialisation
Theinitial content and appearance of afile name editor are specified by means of an FNEDI T resource struct:

STRUCT FNEDI T /* filename editor */

{

BYTE fl ags=0;
TEXT fname="",;
}

The behaviour of the file name editor is specified by ORing a suitable combination of the following flagsinto
thef | ags member of the above struct.

I N_FNEDI T_STANDARD set f name to be the file name specified by the Dat UsedPat hNanePt r
reserved static: typically pointsto the application's current file.

I N_FNEDI T_ALLOW DI RS alow the name of adirectory with the file name.

I N_FNEDI T_JUST_DI RS alow only the name of adirectory and no file name.

I N_FNEDI T_FORCE_NXI ST disalow existing files.

I N_FNEDI T_NO_AUTOQUERY do not query on an existing file (by default the control prompts the user
before accepting an aready existing file - this hel ps prevent accidental
deletion/overwriting).

I N_FNEDI T_ACCEPT_NULL alow the null string.

I N_FNEDI T_SET_DEFEXT set the default file extension to that of the file specified in the FNEDI T
resource struct.

I N_FNEDI T_CAN_W LDCARD allow wildcards.

Setting

The file name may be set by passing a pointer to acharacter string to thewn_set method. The character
string should contain the file name terminated by a zero character.

The default extension may be set by passing a pointer to acharacter string to thewn_set method. The first
character must be 0x01. The following characters can either be afile name, or afile extension preceded by a
full stop character. Only the extension is significant.

The following code fragment demonstrates the setting of the default extension:
TEXT buf [P_FNAMESI ZE] ;
buf[0] =1;

p_scpy(&buf[1],".DBF");
p_send4(Dat Di al ogPtr, O WN_SET, 3, &uf[0]);

OBJECT ORIENTED PROGRAMMING GUIDE

Sensing

A buffer, of size at least P_FNAMESI ZE bytes, isused for sensing the current full file specification from afile
name editor, asillustrated by the follwing code fragment:

TEXT buf [P_FNANMESI ZE] ;

p_send4(Dat Di al ogPtr, O WN_SENSE, 3, &uf[0]);

File name choice list
Thefiles.g header file should be included when using afile name choice list control.

A file name choice list presents the user with a choice of files with the selection being made with the
keyboard arrow keys, vialetter matching or by pressing Tab to display the pop-out file selector. A wide
range of optionsis provided for customising the behaviour of afile name choicelist: these options are
described in the resources section below.

A file name choicelist is always supplied with a pack selector that is placed immediately below asin the
following example: the selector is specified by ORing the DLGBOX_NEEDS_PACK flaginto thef | ags member
of the CONTROL struct (see below).

Open file

+ gelacuti+

' Disk Internal

A file name choicelist is commonly used when opening an existing file. It is not usually used for saving an
edited/modified file for which afile name editor is better suited.

A file name choice list control could be defined using the following resource:
RESOURCE CONTROL

{

cl ass=C_FNSELWN;

f1 ags=DLGBOX_| TEM _NEEDS_PACK;
i nf o=FNSELWN

{

fname="";
b
}

Initialisation

Theinitial content and behaviour of afile name choice list control are defined by an FNSELWN resource
struct asfollows:

STRUCT FNSELWN /* filename sel ector */

{

BYTE fl ags=0;
TEXT fname="",;
}

The behaviour of afile name choice list control is specified by ORing one or more of the following flagsinto
thef | ags member of the above struct

I N_FNSELWN_STANDARD select thefile specified by the Dat UsedPat hNamePt r reserved static:
typically pointsto the application's current file.

I N_FNSELWN_SHOW DI RS show directory names.

I N_FNSELWN_HI DE_FI LES hide directory names.

I N_FNSELWN_RESTRI CT_LI ST display only files with extension matching the default.

I N_FNSELWN_CAN_TAG alow filetagging: filetagging is carried out with the file name choice list -
pressing the '+' and '-' keystags and untags afile respectively.

8 DIALOG CONTROLS

I N_FNSELWN_ACCEPT_NULL accept the null string.

I N_FNSELWN_SET_DEFEXT set the default extension to that of the file specified in the FNSELWN struct.
I N_FNSELWN_CAN_W LDCARD alow wildcards.

Setting

The file name may be set by passing a pointer to acharacter string to thewn_set method. The character
string should contain the file name terminated by a zero character. Wildcardsin the file name are allowed.

The default extension may be set by passing a pointer to a character string to thewn_set method. The first
character must be 0x01. The following characters can either be afile name, or afile extension preceded by a
full stop character. Only the extension is significant.

The following code fragment demonstrates the setting of the file name:
TEXT buf [P_FNAMESI ZE] ;

p_scpy(&buf[0], " DATABASE. DBF") ;
p_send4(Dat Di al ogPtr, O WN_SET, 3, &uf[0]);

Sensing

A buffer, of size at least P_FNAMESI ZE bytes, is used for sensing the full file specification of the currently
selected file.

The following code fragment demonstrates the sensing afile name choice list:
TEXT buf [P_FNAMESI ZE] ;

p_send4(Dat Di al ogPtr, O WN_SENSE, 3, &uf[0]);

CHAPTER 9

ACTIVE OBJECTS

An active object represents an event source and is, by definition, an instance of any class that hasACTI VE
as an ancestor in itsinheritance chain. This chapter provides a simple introduction to the use of active
objects: for further information on the precise mechanismsinvolved, see The APPMAN Application
Manager Class, The Active Class and Active Objects, and following chapters in the OLIB Reference manual .

All HWIM applications contain at |east one active object, which is a subclass of the HWIM WSERV window
server active object class. This active object represents the source of events directed to the application by
the window server process.

An application may create additional active objectsto represent other event sources. A simple example
would be to implement atimer, so that the application will, from time to time, receive timer expiry events.

A prioritised queue of an application’s active objects is maintained by the application manager. A significant
part of the application manager's function isin its event loop, which manages this queue, associating the
occurrence of an event with the appropriate active object and sending it a message.

An active object must be added to this queue when it is created. This may be done explicitly by the code
that creates the active object, or it may be included in the initialisation (that is, in theao_i ni t method) of
the active object itself.

Active objects and asynchronous requests

Before an event can occur it must be requested by a program. The way to do thisisto make an
asynchronous request, as explained in the Asynchronous Requests and Semaphor es chapter of the PLIB
Reference manual. In consequence there is a strong connection between the making of asynchronous
requests and active objects.

An active object is, in fact, the standard way of making and processing asynchronous requests in HWIM
applications. Since the application manager contains a mechanism with the express purpose of scheduling
the events marking the compl etion of asynchronous requests that are encapsulated in active objects, you
are recommended to use active objects for all asynchronous operationsin an HWIM application.

The diagram opposite illustrates the general form of any event loop.

Testing for the event that has completed is usually done by polling the ‘

status words of all the possible requests. request event
The application manager's event loop follows this general pattern, except ‘

that the code that requests an event and the code that processesits

completion are provided by theao_queue and ao_r un methods wait for completion
respectively of one or more active objects. On completion of arequest, the ‘
application manager pollsthe active objectsin its queue to determine

which one can process the event, and explicitly sendsit an AO_RUN test which event
message. In contrast, the application manager's event loop contains no

explicit code to request an event and relies on its active objects to do this. ‘

Since an HWIM application always has at |east one active object - its process event
window server active object - there will always be something to make such

arequest. |

Note that thereis an implied restriction that there should be only asingle

OBJECT ORIENTED PROGRAMMING GUIDE

asynchronous request in anao_queue method, and there should be no such request madeintheao_r un
method.

All ao_r un methods must return the value RUN_ACTI VE_USED (defined in appman.g) to signify that the
event has been consumed.

An active object has astatusword (act i ve. st at us) initsproperty and it isthis status word that the
application manager polls to determine which active object isto be sent an AO_RUN message. In order to
assist the polling mechanism, an active object has afurther item of property, acti ve. i sacti ve, which
must be set to a TRUE value when an asynchronous request is made. It is automatically cleared when the
active object is sent an AO_RUN message.

Active object priorities

When an active object is created, it must be given apriority (by setting itsact i ve. pri ori ty property)
beforeit is added to the application manager's queue. If, at any time, the requests from two or more active
objects have completed, the one with highest priority will be the first to be sent anAO_RUN message.

A priority isasigned byte and therefore must lie in the range +127 (highest priority) to-128 (lowest priority).
A number of standard priorities are defined in appman.g and some of the more significant of these are
explained below.

PRI ORI TY_ACTI VE_I PCS +80 - for inter-process communication

PRI ORI TY_ACTI VE_WSERV +60 - the priority of the window server active object
PRI ORI TY_ACTI VE_SERI AL +20- for seria port communications

PRI ORI TY_ACTI VE_FI LES -20 - for reading or writing files

PRI ORI TY_ACTI VE_REPEAT -40- for timers, animation, etc.
ER

PRI ORI TY_ACTI VE_PRI NT -60 - for communication with a printer

PRI ORI TY_ACTI VE_COMPUT -100 - for background computation
E

These values are supplied as guidelines and you are not compelled to follow them precisely. However, in
order to ensure the application’s responsiveness to redraws and the keyboard, most active objects should
be given priorities that do not exceed that of the window server active object.

Application responsiveness

An active object can not be given a chance to run (by being sent an AO_RUN message) until the execution of
a previous AO_RUN message (by this, or any other active object) has terminated. Thus an active object, even
one of low priority, that performs extensive processing initsao_r un method will reduce the application's
responsiveness to other events.

It isthe programmer's responsibility to ensure that the processing done in any one call to an active object's
ao_r un method is restricted to areasonable amount. An active object that, for example, is being used to
write afileto an SSD should not write the whole file in one operation, but should divide the writing into a
number of relatively small sections.

One way of doing thisisto construct a buffer containing a section of the file and write the contents of this
buffer to the file by means of an asynchronous write request in the ao_queue method. On receipt of an
AO_RUN message, signifying that the write has completed, the process can be repeated, provided thereis
still part of thefilethat has not been written.

An aternative approach would be to use a technique similar to the background processing mechanism,
described below. In this case writing to the file would be performed synchronously, from withintheao_r un
method. A disadvantage to this second technique isthat, if writing to aremote device, the write could take
an extended time to complete and thus may compromise the responsiveness of the application.

Background processing

An active object isideally suited to breaking down along computation into a sequence of small sections
and may be used for this purpose, even if the process does not invol ve making asynchronous requests.
Examples of where this technique may be useful are the formatting of alarge amount of text, or the

recal culation of all the cells of a spreadsheet.

9-2

9 ACTIVE OBJECTS

The Al DLE classis supplied in the OLIB library asabasis for thistype of use. The supplied class
subclasses ACTI VE to replace theao_i ni t method with code that setsa priority of

PRI ORI TY_ACTI VE_COMPUTE and adds itself to the application manager's active object queue. It usesthe
default (ACTI VE class) ao_queue method, which simply setsact i ve. i sacti ve to TRUE and generates an
event by callingp_i osi gnal .

The Al DLE class must be subclassed to replace the ao_r un method with one to perform a unit of processing
and, if processing is not complete, send itself an AO_ QUEUE message.

Errors

Apart from errors during initialisation (for, example, failure to open achannel to adevice) errorsthat result in
p_l eave being called are expected only to occur intheao_r un method. Thus, all operations that could
potentially fail, such asthe allocation of memory from the heap, should be performed from within this
method, with acall to p_I eave if an error occurs. Where possible, it is more effective to usethe f _xxx
functions, such asf _al | oc,f _neworf_send.

If failureis possiblein any asynchronous request that is made in the ao_queue method, the value of
acti ve. st at us should be checked for an error valuein the ao_r un method. Any such error should result
inp_| eave being called, passing the error value.

Any call top_I eave fromwithintheao_r un method is handled by system code to perform standard error
handling, as described in the Error Handling and Error Recovery chapter. Part of this standard mechanism
isto send the active object an AO_ABRUN message.

Theao_abr un method supplied by the ACTI VE class provides fail-saf e reporting of the error and so, by
default, no active object needs to take any explicit action to report errorsto the user. The ao_abr un method
isintended to be replaced by subclassers to provide any application-specific error recovery (again, see the
Error Handling and Error Recovery chapter). In most cases the replacement method will, in addition to any
other action, supersend the AO_ABRUN message to report the error. Depending on the specific
circumstances, the replacement ao_abr un method may, asitsfinal action, send the active object a DESTROY
message. Thiswould normally be appropriate if the active object was created by a command manager
method, called as aresult of the user's selection of acommand menu option.

A simple timer

The Timer demonstration application isinstalled into the \sibosdk\oopdemo directory. It may be built from
that directory by typing:

make timer

Itisasimple example that uses atimer to print an information message every two seconds, but clearly
illustrates the way in which an active object is set up and used.

The category file, timer.cat contains, in addition to classes that will be familiar from the "Hello World"
example, the class definition of atimer:

CLASS nytimer active

{

REPLACE ao_init
REPLACE ao_queue
REPLACE ao_run
PROPERTY

{
UWORD count ;

}
}

Note that, in order to show clearly the active object mechanisms, the MyTI MER class subclasses ACTI VE. In
areal caseit would be more efficient to subclassthe OLIB TI MER class, which supplies some of the
functionality that is duplicated in MyTI MER.

During theinitialisation of the application’'s window server active object, an instance of MYTI MER is created
and initialised asillustrated below:

OBJECT ORIENTED PROGRAMMING GUIDE

METHOD VO D timerws_ws_dyn_init(PR_TI MERWS *sel f)

sel f->wserv. cli=f_new(CAT_TI MER_TI MER, C_TI MERBW ;
p_send2(sel f->wserv.cli, O W_INIT);

f _newsend(CAT_TI MER_TI MER, C_ MYTI MER, O AO_INIT,"TIM ", -1);
}

Theao_i ni t method first supersendsthe AO_| NI T message to be processed by the ACTI VE ao_i ni t
method, which opens achannel to the TI M device. It then setsitself to areasonably low priority and adds
itself to the application manager's active object queue. Itsfinal action isto send an AO_QUEUE message.

METHOD VOI D nyti mer_ao_i nit (PR_MYTI MER *sel f, TEXT *devname, | NT node)
{
p_supersend4(sel f, O _AO_I NI T, devhane, node) ;
sel f->active.priority=PRI ORI TY_ACTI VE_REPEATER,;
p_send3(w_am O _AM ADD_TASK, sel f);
p_send2(sel f, O_AO QUEUE) ;
}

Theao_queue method, listed below, simply makes an asynchronous request on the timer, using
active. st at asitsstatusword. Also, asrequired, it setsact i ve. i sacti ve to TRUE. An event will be
signalled after the requested two-second delay.

METHOD VOI D nyti ner_ao_queue(PR_MYTI MER *sel f)
{
LONG del ay;

del ay=20;
p_i oc4(sel f->active. pch, P_FREAD, &sel f->active. stat, &el ay);
sel f->active.isactive=TRUE;

}

When the event has occurred MyTI MER Will be sent an AO_RUN message to signify that the requested event
has completed. The ao_r un method increments a counter in its property and uses this value to display an
information message at the bottom right hand corner of the screen. It then sends an AO_QUEUE message to
restart the timer before returning RUN_ACTI VE_USED.

METHOD | NT myti mer_ao_run(PR_MYTI MER *sel f)
{

sel f->nyti mer. count +=1;

hl nf oPri nt (TI MER_I NFO, sel f->nyti mer. count);
p_send2(sel f, O AO_QUEUE) ;

ret ur n(RUN_ACTI VE_USED) ;

}

The timer continuesto run for the lifetime of the application.

In areal application an active object could be created el sewhere in the program - frequently from a command
manager method, executed in response to the selection of amenu option. Theao_r un method would
include atest for the completion of processing and, when complete would terminate itself by not sending an
AO_QUEUE message (it might send itself a DESTROY message instead).

CHAPTER 10

ERROR HANDLING AND ERROR RECOVERY

Psion's Object Oriented programming system and the associated libraries provide considerable support for
reporting and recovering from error conditions. In consequence, atypical HWIM application contains very
little explicit error-handling code.

The cornerstones of error reporting and recovery are:
theuse of p_ent er andp_|I eave to centralise the handling of errors

using PROPERTY n statementsin category files, for the automatic destruction of component
objects

the OLIB CLEANUP class, to provide for the freeing of temporary resources
standard error reporting in the ao_abr un method of all active objects

This chapter gives abrief summary of the range of techniques that are available.

Errors during initialisation

One simpl e precaution makes the handling errors during the initialisation of an application very simple:

The application should be written so that all resources that the application needsin
order to draw itsinitial view are created fromwithinthews_dyn_i ni t method of its
subclass of WSERV.

If this condition is met then, assuming there are no coding errorsthat cause p_pani c to be called, the
application can not fail between the return fromthews_dyn_i ni t method and its appearance on the screen.

All that the application hasto do in the event of afailure to create one of its start-up resources from
anywhereinthews_dyn_i ni t method, or any other functions or methods that thiscalls, istocall p_I eave
with asuitable error number. System code handles the recovery and the reporting that the application has
failed to start.

The most common cause of failure during initialisation isthat there isinsufficient memory available. In many
applicationsthisisthe only error that could occur during start-up initialisation. An error of this nature can
normally be precipitated by setting the application'sinitial heap size requirement to be sufficiently large.
Thisisdone by setting the heapsi ze variable in the applications.pr file, as described in the An HWMM
Application - Hello World chapter. Should insufficient memory be available, the application will then fail at a
very early stage, before any application-specific code is executed, and thisfailure will be handled by system
code.

To avoid excessive memory use by an application you should avoid allowing for the worst case. Y ou should
not, for example, set an initial heap size for afile-based application so that it is guaranteed to be able to load
an exceptionally largefile.

This technique may not prevent application code from running if, for example, the out-of-memory failure
occurs when the window server is creating server-side resources for the application, or if afile-based
application failswhile opening alarge file. It will, however, cause the application to fail earlier rather than
later in the majority of cases.

10-1

OBJECT ORIENTED PROGRAMMING GUIDE

General error recovery

One of the most important aspects of the handling of errorsisto understand that virtually all application-
specific code is executed from within the ao_r un method of some active object or other. For example, al
code that is executed in response to the receipt of awindow server event is executed from within the

ao_r un method of the application's subclass of the WSERV object. Thisincludes all system-generated
redrawing and all keypress processing, which itself includes both the receipt of a WN_KEY message by any
window and, more indirectly, the processing of acommand by means of a command manager method.

There are two main areas of code that are exceptionsto this general case:
the start-up initialisation of an application
code executed in response to an error, such as an active object'sao_abr un method.

Errors occurring in thefirst of these two areas are handled as described earlier, while the code executed in
response to an error should be written so that it can never, itself, generate errors.

In consequence an error can always be reported simply by callingp_I eave. When called within an active
object'sao_r un method, thiswill be caught by the application manager's event handler and will, cause the
application manager to be sent an AM_CLEAN_UP message. This provides standard resource clean-up and
also makes a call-back to the active object's ownao_abr un method, to provide standard error reporting
(whichis, itself, designed so that it will not fail). For further details, see the description of APPMAN'S

am st art method, and the further topicsthat it references, in the APPMAN Application Manager Class
chapter of the OLIB Reference manual.

Note that an application that has one or more global actions to execute on the occurrence of all types of
error can subclasstheam cl ean_up method to provide these actions as well as the method's standard
functionality. The Record application, which is described in the Application Design chapter, and whose
source codeis supplied with the SDK, provides an example of the use of this technique.

The roll-back principle

All operations that can fail should be written so that failure causes roll-back to a previously safe state.
Failure to ensure adequate roll-back is one of the most common defects in application software and usually
evidenced by a monotonically increasing use of memory as some operation is repeated. Such an occurrence
can generally be detected faily easily, for example, by the use of spy.app (described in the Series 3/3a
Programming Guide).

A simple exampleistheinsertion of recordsinto avariable array (see, for example, theva_i nser t mmethod
of the VAFLAT class, described in the Variable Arrays chapter of the OLIB Reference manual). If an error
occurs before the insertion is complete, any partially inserted datais removed before the error is propagated
by callingp_| eave.

In general, any operation that consists of a sequence of stages, where any stage could fail, must be written
to release any resources that have been created in earlier successful stages. The general model isillustrated
in the following code:

VO D mul ti_stage()
{

I NT error;

stage_one(); /* this creates a resource, calling p_leave on failure */
error=p_enter(stage_two); /* catch any error in the second stage */
if (error)

undo_stage_one(); /* release the resource created in stage one */
p_l eave(error); /* propagate the error to system code */
}

}

If possible, such code should be written so that the roll-back is as simple as possible. For example, suppose
alarge amount of data hasto be inserted into abuffer, and that the data has to be read in segments.
Recovery may be complex if each segment isread and inserted separately, since afailure will require the
deletion of all previously inserted segments. A simpler approach, which requires no explicit error recovery
code, isto pre-allocate space for the entire insertion in asingle operation. If thisfails (presumably by calling
p_| eave) no further action is necessary. If it succeeds, the data can be written into the allocated space,
segment by segment, with no risk of subsequent failure. If there could be afailure in reading the data

10-2

10 ERROR HANDLING AND ERROR RECOVERY

segments then this approach still simplifies matters since there is always only afixed size of allocated
memory to be released, regardless of how many segments have been copied into it.

The following sections give anumber of different means of ensuring that roll-back recovers resources that
have been created before an error occurs. In areal caseitislikely that a mixture of these techniques will be
used.

Roll-back for component objects

The creation of an object that contains a number of components could fail during the creation of the object
itself or during the creation or initialisation of any of its components. Any failure should result in the
destruction of the object and any partially created components. This situation is particularly simple since it
can make use of the built-in mechanisms for component destruction.

Suppose, for example, that aMY APP category contains the MYyCLASS class, with component classes
COMPONENT1 and COMPONENT2. The class definition for MYCLASS could be as follows:

CLASS nycl ass root

{
ADD i ni t
PROPERTY 2

{
VO D *conpl;
VO D *conp2;
}

}

whereitsi ni t method function might be:
VO D mycl ass_i nit (PR_MYCLASS *sel f)
{
sel f->nycl ass. conpl=f _new(CAT_MYAPP_MYAPP, C_COMPONENT1) ;

sel f->nycl ass. conp2=f _new(CAT_MYAPP_MYAPP, C_COMPONENT2) ;
}

If aMYCLASS instanceis created with:
VOl D *hand;
hand=f _newsend(CAT_MYAPP_MYAPP, C_MYCLASS, O I NI T);

then afailure (by means of acall top_| eave) at any stage will cause the object and any created
components to be sent a DESTROY message, and the call top_| eave isthen propagated.

Notetheuseof f _newandf_newsend, to guaranteeacall top_| eave onfailure.
The principle may be applied to the creation of components of the components, and so on.

Other resources in an object's property

Resources that are not component objects, but whose handles are stored in an object's property must be
explicitly released in the object'sdest r oy method. Thisisillustrated in the following example, which
extends the one given above.

In this case, MYCLASS has acell of allocated memory, with its handle stored in its property, according to the
class definition:

CLASS nycl ass root

{
REPLACE destr oy

ADD i ni t
CONSTANTS
{
ALLOC_SI ZE 100
}
PROPERTY 2
{
VO D *conpl;
VO D *conmp?2;
BYTE *al | oc;
}
}

10-3

OBJECT ORIENTED PROGRAMMING GUIDE

Itsi ni t method function could then be:
VO D nycl ass_i ni t (PR_MYCLASS *sel f)

sel f->nycl ass. conpl=f _new(CAT_MYAPP_MYAPP, C_COMPONENT1) ;
sel f->nycl ass. conp2=f _new(CAT_MYAPP_MYAPP, C_COMPONENT2) ;
sel f->nycl ass. al |l oc=f _al | oc(ALLOC_SI ZE) ;

}

Again, note the use of thef _xxx functions, to guarantee acall top_| eave onfailure.
Thedest r oy method function would be:
VO D nycl ass_destroy(PR_MYCLASS *sel f)
if (self->nyclass.alloc)

p_free(sel f->mycl ass. al |l oc)
sel f->nycl ass. al l oc=NULL; /* not strictly necessary in this case */

}
p_supersend2(sel f, O DESTROY) ;
}

Again, creating an instance of MYCLASS with:
VAl D *hand;
hand=f _newsend(CAT_MYAPP_MYAPP, C_MYCLASS, O I NI T);
will result in total roll-back (and an error report) in the event of any failure.

Notethat it is good practice to zero the property corresponding to the handle of aresource when that
resourceis released. Although not strictly necessary in the above example, in general it isuseful asit
prevents an attempt being made to release a resource that does not exist.

Using the CLEANUP list

An application may create temporary resources whose handles are stored on the stack, rather thanin an
object's property. Alternatively, even if the handles are stored in property, the resources may not be created
or destroyed at the same time as the ‘owning' object, and the roll-back on failure to create the resource may
not need an object to be destroyed.

In such cases, roll-back can be performed by use of the CLEANUP object that is present in every HWIM
application. This object is described in The CLEANUP Class, in the OLIB Reference manual.

Suppose that, the file afile.txt needs to be opened temporarily, together with the temporary creation of two
allocated memory cells. On failure to create all of these three resources, any of them that have been created
must be released and the error reported. Suitable code would be as follows:

VOI D Cr eat eResour ces(VO D)
{
VO D *fcb;
UBYTE *pl, p2;
I NT cl eanl, cl ean2;

f _open(&fchb, " AFI LE. TXT"); /* just leave on error */

cl eanl=cl _add_i ochan(fcbh); /* add file handle to cleanup list */

pl=f_al | oc(100); /* create first cell */

cl ean2=cl _add_al I oc(pl); /* add first cell to cleanup list */

p2=f _al | oc(100); /* if this succeeds, all resources are
created */

cl _remove(cl eanl); /* so we can rempve both items... */

cl _remove(cl ean2); /* ... fromthe cleanup list */

/* processing that can not fail */

p_close(fch):
p_free(pl);
p_free(p2);

}

Remember that resources on the cleanup list will be removed by system codeif p_I eave iscaledin the
ao_r un method of any active object.

10-4

10 ERROR HANDLING AND ERROR RECOVERY

Interactions with system code

Care should be taken when errors arise in application-specific code when system code also needsto perform
error recovery. A typical caseisduring theinitialisation of adialog, sinceit is system code that controls the
roll-back from any partially complete creation of dialog objects.

In general thisis not a problem since the application code does not normally need to take any specific action
on an error condition. The application code can just call p_| eave and leave the system code to perform all
necessary error recovery.

This might not be the case if, exceptionally, the application-specific code needs to perform some specific
action on detection of an error, such as reporting the error in a non-standard way, or sending some form of
notification to another process. In such a situation the application code will normally trap errors by calling
p_ent er and perform local error handling when this call returns an error.

The preferred solution in such a case isto propagate the error to system code by callingp_I eave (with the
same error number as was returned from the call top_ent er) after thelocal error handling is complete. This
will allow system code to perform its own error recovery, including reporting the error in a standard way. If
the error has already been reported by application code, the error can be propagated by callingp_| eave(-
1) . Thiswill enable any required error recovery in system code but will disable the standard error reporting.

A difficulty arisesin the (fortunately rare) case whereit is essential, for some reason, that the application
code doesnot call p_I eave. If, in such a case, system-owned resources may need to be released. then the
application's error recovery code should at least send the application manager a CL_CLEAN_LEVEL message,
which will normally be sufficient. Thereis, however, no guarantee that this will always be totally successful:
such a situation should be avoided if at all possible.

10-5

CHAPTER 11

FILE-BASED APPLICATIONS

The general aspects of file-based applications for the Series 3 range of machines are described in the
Communicating with the System Screen chapter of the Series 3 Programming Guide. This chapter assumes
abasic familiarity with that material and concentrates on those aspects that are of significance to an object
oriented application. The three main topics that are discussed are:

start-up initialisation
opening and creating files
saving files

To maintain consistency with the built-in applications, all file-based applications should obey the general
guidelines for such applications. They should, for example, storetheir filesin a suitable subdirectory and
applications that use record-based files should write their records in aflash-friendly manner (see, for
example, the Database Files chapter of the PLIB Reference manual). It isageneral rule that an application
must keep its current file open, eveniif it is not actually reading from or writing to thefile.

Start-up initialisation

Asisdescribed in the Series 3 Programming Guide, the command line that is passed to afile-based
application when it is started contains the name of afile to be opened or created, the default file extension
and any 'aias information. System initialisation code analyses the command line and writes the information
that it contains to a number of standard locations. Thus, by the time the application receives a

WS_DYN_I NI T message, to perform application-specific initialisation, the datais set up asfollows:

the full path name of the file to be opened or created is pointed to by the magic static
Dat UsedPat hNamePt r

whether the fileisto be created or opened is determined by the UBYTE accessed by
w_am >hwi nman. command, which will contain either H_COMVAND_CREATE_FI LE or
H_COMVAND_OPEN_FI LE (defined in hwimman.g)

the default file name extension for the application'sfilesis pointed to by an item of the application
manager's property and is accessed by the TEXT pointer w_am >hwi mman. def ext

the aliasinformation, if required, is accessed viathe TEXT pointer w_am >hwi mman. al i asi nf o

A convenient way of opening or creating the required file from within the application-specific initialisation
code isto send the command manager a COM_FI LE_CHANGE message of the form:

p_send4(w_ws->wserv.com O COM FI LE_CHANGE, w_am
>hwi mman. command, Dat UsedPat hNamePt r) ;

The required behaviour of this method is described in the following section.

11-1

OBJECT ORIENTED PROGRAMMING GUIDE

Opening and creating files

A file-based application will normally have New and Open command menu options, to create a new file and
to open an existing file. The corresponding command manager method functions would present suitable
dialogsto specify afile name and any other relevant parameters.

On successful completion of the dialog, the opening of an existing file or the creation of anew file could
conveniently be performed by calling areplacement of thecom fi | e_change method of the application's
subclass of the covvaN command manager. A typical replacement would have the form indicated by the
following code:

GLDEF_D TEXT fil enanme[P_FNAMESI ZE] ;

METHOD | NT mycman_com fil e_change(PR_MYCMAN *sel f, | NT command, TEXT *pnane)
{

SaveCurrent Fil e(sel f);
p_scpy(&fil enane[0], pnane);
switch (command)

{

case H_COMMAND_CREATE_FI LE:
hEnsur ePat h(& i | enane[0]) ;
CreateNewFi |l e(sel f, & il enane[0]);
br eak;

case H_COMMAND_OPEN_FI LE:
OpenExi stingFil e(self,&filename[0]);
br eak;

}
p_send3(w_am O_AM NEW FI LENAME, &f i | ename[0]);
return(0); /* there has been no call to p_l eave */

}

where SaveCurrent Fi | e, Cr eat eNewFi | e and OpenExi st i ngFi | e represent application-specific code
to perform the corresponding actions.

The following points must be noted regarding this code:

the method is also called by system code, under the protection of p_ent er , and must return zero
on successful completion. Thereisthus an implicit assumption that any failure within the method
should result inp_I eave being called. Application code may, if desired, take advantage of this, to
trap and explicitly handle errors, by sending the message by means of p_ent er send. An
application will normally have to handle afailure to open or create afile by attempting to reopen the
previously open file.

it is standard practiceto call the utility functionhEnsur ePat h at any point whereit is possible that
the directory specified by afile specification might not exist. Although thisis not guaranteed to
succeed, and does not report an error on failure, it reduces the likelihood that the following
operation (in this case, the creation of afile) could fail, merely because a directory has not yet been
created.

whenever an application switchesto anew file it must, on successful completion of the operation,
send the application manager an AM_NEW _FI LENAME message, passing a pointer to a permanent
buffer containing the full file specification of the new file. System code setsDat UsedPat hnamePt r
to point to this name, as required for correct operation of the System Screen. Note that, in the
example, this buffer is, for clarity, implemented as static data. In areal application it would normally
be part of the property of some object that remained in existence for the whole time that thisfileis
the application's current file. In asimple application this object could be the command manager
itself, but would normally be an object that represents the current file.

A common alternative scheme isillustrated by the Record application (whose codeis supplied and is
discussed in the Application Design chapter). In this case, the application's command manager has, for
example, acom open_fi | e method that does not usethecom fi | e_change method. Instead, both
methods call common application-specific code.

Switchfiles messages

Asdiscussed in the Series 3 Programming Guide, the System Screen can, at any time, send a Switchfiles
message to afile-based application. System code within the application converts such amessage to a

11-2

11 FILE-BASED APPLICATIONS

COM _FI LE_CHANGE message, sent to the application's command manager. The receipt of this message may
be handled in exactly the same way as described above.

An application that is temporarily unable to process a Switchfiles message may set the magic static
Dat Locked to anon-zero value, clearing it when it is again able to process such a message.

If opening afile takes an extended time, it would be sensible for an application to set Dat Locked for the
duration of this operation. In this case, the application must ensure that Dat Locked is cleared on
termination, even if the operation terminates on an error (which will generally resultinp_I eave being
called).

Saving files

Saving afileis subject to many of the considerations already discussed in the previous section. An
application will generally support at least Save and Save as menu options, with only the second of these
requiring adialog to select afile name.

If, after saving the file with a specific name, the current file takes the new file name, this must be reported by
sending the application manager an AM_NEW FI LENAME message, as described above.

Saving the file may be an extended operation and should similarly be protected against Switchfiles
messages by setting Dat Locked.

Application termination

On termination of afile-based application by means of an Exit menu option, the command manager's

com exi t method should save any outstanding changes to the current file automatically, without any
notification to the user. Should an error occur during any such saving, the application should come to the
foreground (see below). The user should then be notified of the error and offered the option of cancelling
the Exit. Oncethefileis successfully saved (or, on failure, the user has elected to terminate the application)
thecom exi t method should either supersend the COM_EXI T message or, equivalently, call p_exi t (0) .

Thefollowing codeillustrates a possible replacement com exi t method:

METHOD VOI D nycman_com exi t (PR_MYCMAN *sel f)
{

I NT error;

error=p_ent er2(SaveChanges, sel f);
if (error)

{

wCl i ent Position(0,0); /* cone to foreground */

hErrorDi al og(error, 0);

i f (h2Li neConfirm - SYS_LOSI NG_CHANGES, - SYS_CONFI RM_CONTI NUE))
return;

p_supersend2(sel f, O_COM EXI T);

} The code assumes that the application-specific function SaveChanges returns zero if no
changes have been made or if saving the changed file was successful. Any p_| eave caused by an error
while saving thefileis trapped by calling SaveChanges under the protection of p_ent er and is explicitly
reported (by use of the hEr r or Di al og utility function).

Shutdown messages

The System screen may, at any time, send an application a Shutdown message. System code within the
application converts such amessage to aCoM _EXI T message, sent to the application's command manager.
The receipt of this message may be handled in the same way as described above.

An application may receive a Shutdown message whileit is abackground process. To ensure that the user
can see and respond to any error notification, the process must therefore come to foreground, as mentioned
above.

Note that setting Dat Locked disables Shutdown messages as well as Switchfiles messages.

11-3

CHAPTER 12

EDIT WINDOWS

This chapter explains how to use the HWIM EDW N classto create edit windows that (to name but afew
features)

handle all standard cursor movement, selection, typing, and deletion keys

can be either single-line or multi-line

automatically scroll vertically and/or horizontally, whenever required

automatically word-wrap, whenever required

provide common editing functionality such asCopy, Insert, Bring, Evaluate, Find, and Replace.

All the features of Hwif edit boxes, available through the Hwif hEBxxx functions, are also available to
HWIM programmers using EDW N directly. (In fact, as can be confirmed by consulting the module ehwif.c in
the optional \sibosdk\hwifsrc directory, the hEBxxx functions are just thin layers over calls to various
methods of EDW N.) However, programming directly at the EDW N level opens up many additional
possibilities. Some of these additional possibilitiesare:

more efficient handling of larger amounts of text

edit windows (and edit-li ke windows) which support “labels’ in the left-margin
edit windows with tabs and variabl e tabstops

edit windows with multiple fonts and font styles.

In fact, the main editing window in the Word Processor application built into the Series 3 is a subclass of
EDW N - as are the main windows of the Database and Program Editor applications.

In order to achieve effects like this, programmers need to become acquainted with some of the component
objects utilised by EDW N - for example the EPDOC document object, the SCRI MG screen image object, and
the SCRLAY screen layout object. Later sections of this chapter provide an introduction to these additional
objects (which are all instances of classesin FORM). However, many of the aspects of EDW N can be
accessed without any knowledge of theinternal structure of the class. These aspects are described in the
earlier sections of this chapter.

Introduction to EDWIN

Dialogs and edit windows contrasted

Thefirst use a programmer normally makes of EDW Nis by having an edit box in adialog. (Seethe chapter
Dialog Controls for information on how to program edit boxesin dialogs.)

Inthis case, the initialisation of the edit window istaken care of by system code. System code likewise
ensures that

keypresses are passed to the edit box at the right time

the edit box is aways displayed in the correct “emphasis’ state (ie with its cursor flashing or not,
asthe case may be, and with any select region highlighted when appropriate).

12-1

OBJECT ORIENTED PROGRAMMING GUIDE

The responsibility of the programmer in this case is merely to
choose which initialisation flags to define
set text into the edit box when needed
sense the contents of the edit box, after the user has edited them.

In contrast, when an application has an edit window outside adialog box, the programmer hasto accept the
following additional responsibilities

creating the edit window to start with - by filling in fieldsin the | N_EDW N data structure (and,
optionally, inthe | N_EDW N_X auxiliary data structure)

deciding when the edit window should receive keys- and passing these keys onto the edit window
deciding when the edit window should be emphasised.

The programmer also has to draw any border required for the edit window; the EDW N class has, itself, no
notion of aborder.

The NOTES example program

The examplesin thefirst half of this chapter are mainly based on the example application Notes.app. The
source code of this application is placed in the directory \sibosdk\notes if the optional OOPDEMO
component of the SIBO C SDK isinstalled. This application may be recognised asan HWIM version of one
of the Hwif example programs. It createsthree different edit windows, as can be seen in the following screen
shot:

(This is the title {single line editor) j[MNot

(" This is the main body of the note.
It is a multi-line editor, supporting clipboard functionality, and
vthe lines of text wrap automatically when required|

ERYED
- §5)
(Find: <Find string here> 1 274 |27t

In this screen shot, the emphasisis currently with the middle editor - as can be seen from the flashing cursor
at the end of the third line, and also by the “margin cursor” in the left margin. These visual indications asto
which editor has the emphasis will of course disappear when the emphasis (sometimes also called the
“keyboard focus”) is moved elsewhere.

The three editors are each drawn within their own border - which is provided by creating the editor within an
instance of the BW N bordered window class. As suggested above, the EDW N classitself does not make
any call to any variant of gBor der : its concern is purely with the text inside the border.

The screen shot is of this application running on a Series 3a. The application also runson a Series 3, and in
this case, there are fewer linesin the middle editor. Infact, aswell asillustrating use of the EDW N class, the
application provides an example of how to write afully-resizeable application, that can run on either the
Series 3 or the Series 3a (exactly the same image program runs on the two different models, and would aso
run intelligently on machines with intermediate screen sizes). However, this feature of this applicationis
incidental to the main theme of this chapter and will not be mentioned again.

The “Hello World” program for edit windows

Because Notes is afairly well developed example program, the basic architecture of programming an edit
window may to some extent be hidden, in its source code, by the lots of other concerns that have to be
taken care of by that program. For thisreason, installing the optional OOPDEM O component of the SDK
also places the source code for amuch simpler example, ehello.img, into the \sibosdk\ehello directory.

This program simply draws a one-line edit window in the middle of the screen, and diverts most incoming
keypresses to that window. The only exception isthe ENTER keypress, which throws up asimple dialog
confirming the text currently in the editor. The following two screen shots demonstrate, respectively, the
main state of the application, and the confirmation dialog:

12-2

12 EDIT WINDOWS

x

el 1o
arld

=

[Hello Lorld .

i Edit windaw
Curtent text Hello world

Hello wi

:

The EHELLO category file
The category file for the ehell o application, ehello.cat, defines only three classes:

| MAGE ehel |l o

EXTERNAL olib
EXTERNAL hwi m

| NCLUDE hwi nman. g
| NCLUDE edwi n. g

CLASS ehwserv wserv

{
REPLACE ws_dyn_init

}
CLASS ehbwi n bwin

REPLACE wn_i ni t
REPLACE wn_enphasi se
REPLACE wn_key
REPLACE wn_dr aw
PROPERTY

{

PR_EDW N *edwi n;

}
}

CLASS ehdl g dl gbox

{
REPLACE dI _dyn_init

}

The bulk of what little code thereisin the application residesin the EHBW N class. As can seen, EHBW Nisa
customsubclass of BW N, and owns a component EDW N object. In technical terms- elaborated below -
EHBW N isthe “landlord” for the edit window in this application.

Initialisation code in EHELLO

The code inmai n hasthe standard form:

12-3

OBJECT ORIENTED PROGRAMMING GUIDE

GLDEF_C VO D mai n(VO D)
{
I N_HW MMAN app;
I N WSERV wser v;

p_linklib(0);

app. fl ags=FLG_APPMAN_RSCFI LE| FLG_APPMAN_SRSCFI LE| FLG_APPMAN_CLEAN;
app. wserv_cat =p_get | i bh(CAT_EHELLO EHELLO);

app. wserv_cl ass=C_EHWSERV;

wserv.com cat=p_getli bh(CAT_EHELLO HW M ;

wserv. com cl ass=C_COWMVAN,;

p_send4(p_new(CAT_EHELLO HW M C_HW MMAN), O AM I NI T, &app, &wserv) ;

}

After mai n, application codeis next called inthews_dyn_i ni t method of the EHWSERV class:

METHOD VO D ehwserv_ws_dyn_i nit (PR_EHWSERV *sel f)

wsEnabl e() ;
sel f->wserv.cli=f_newsend(CAT_EHELLO EHELLO, C EHBW N, O WN_I NI T) ;
}

Evidently, this creates and initialises the client window for the application - an instance of EHBW N. Inturn,
thewn_i ni t method of EHBW Nisasfollows:

METHOD VOI D ehbwi n_wn_init (PR_EHBW N *sel f)

{

W W NDATA wd;

I N_EDW N_X i ni t x;
struct

{

| N_EDW N e;
TEXT rest[21];
} init;

.extent.w dt h=240-50; /* extent cal cul ation presupposes SERI ES 3 screen
*/
. extent. hei ght =3+10+5; /* matches flags set for bwi n bel ow */
.extent.tl.x=0;

.extent.tl.y=31; /* centred vertically */

p_send5(sel f, O WN_CONNECT, NULL, W W N_EXTENT, &wd) ;

hLoadResBuf (EHSTR_INI T, & nit.e.contents[0]);

init.e.vul en=240-50-3-1-5-1; /* one extra pixel clearance each end */
init.e.mxl en=50;

init.e.flags=I N EDW N VULEN PI XELS| | N_EDW N_POSI TI ON_SUPPLI ED;

i

i

888 &

nitx.pos.x=3+1;

nitx.pos.y=3;
sel f->ehbwi n. edwi n=f _newsend(CAT_EHELLO HA' M C_EDW N, O WN_I NI T,

& nit,self, & nitx);

sel f->wi n. flags=I N_BW N_SHADOW 2| | N_BW N_CUSHI ON;
p_send3(sel f, O WN_EMPHASI SE, TRUE) ;
hinitVis(self);
}

Without going into details at the moment, the basic form of this method can still be pointed out:
connect the window to the Window Server (by sendingsel f awn_connect message)
create and initialise the EDW N component object

make thiswindow tree visible.

Other code in EHELLO

The other three methods of EHBW N mainly just delegate responsibility appropriately, between the EDW N
component and the BW N superclass (see later for afuller explanation of what is going on here):

METHOD VO D ehbwi n_wn_enphasi se(PR_EHBW N *sel f, | NT fl ag)
{
p_supersend3(sel f, O WN_EMPHASI SE, f | ag) ;
p_send3(sel f->ehbw n. edwi n, O WN_EMPHASI SE, f | ag) ;

}

12-4

12 EDIT WINDOWS

METHOD VOI D ehbwi n_wn_draw(PR_EHBW N *sel f)

{
p_supersend2(sel f, O WN_DRAW ;
p_send2(sel f->ehbw n. edwi n, O WN_DRAW ;

}
METHOD VO D ehbwi n_wn_key(PR_EHBW N *sel f, | NT keycode, | NT nods)

{
SE_EDW N sense;

if (keycode! =W KEY_RETURN)
p_send4(sel f->ehbwi n. edwi n, O WN_KEY, keycode, nods) ;
el se

p_send3(sel f->ehbwi n. edwi n, O WN_SENSE, &sense) ;
LaunchDi al og(C_EHDLG, EHDLG, sense. buf);

}
}

The utility routine LaunchDi al og has the standard form
LOCAL_C VO D LaunchDi al og(I NT cl ass, | NT resid, VO D *rbuf)
{
DL_DATA dlI d;

dl d.id=resid;

dl d. r buf =r buf;

dl d. pdl g=NULL;

hLaunchDi al (CAT_EHELLO EHELLO, cl ass, &dl d) ;

}

and, inturn, thedl _dyn_i ni t method of the EHDLG dialog box class merely sets the text of the edit window
into atext window in the dialog:

METHOD VOI D ehdl g_dl _dyn_init(PR_DLGBOX *sel f)

{
hDIl gSet Text (1, sel f->dl gbox. rbuf);
}

Simple use of EDWIN

This section explains: how to initialise an edit window, how to pass keysto it, how to set text into it and
sense text out of it, how to passwn_dr aw andwn_enphasi se messages onto it, and the basic format of the
text storedinit.

Initialising an instance of EDWIN

Often, the hardest aspect of incorporating an edit window in an applicationisinitialising it correctly. Once
the edit window has been set up properly, it handles most features automatically.

In order for an edit window to be drawn on the screen, the following steps are required:
1. aninstance of the EDW N class (or a subclass thereof) has to be created
2. awn_i ni t message must be sent to the object, with suitable parameters (see below)

3. thewindow tree of which the editor is part must be made visible, usually viaacall to the utility
functionhl ni t Vi s.

These steps may take place in code such as the following:

IN_EDWN init;
I N_EDW N_X i ni tx;

edwi n=f _newsend(CAT_NOTES HW M C EDW N, O WN_INI T, & ni t, | andl ord, & ni tx);

hinitVis(landlord);

12-5

OBJECT ORIENTED PROGRAMMING GUIDE

The landlord of the edit window

In the above code fragment, the variablel andl or d isthe handle of an instance of (a subclass of) the
HWIM W N class which has connected to the Window Server. Inthe language of the Windows chapter in
thismanual (to which the reader is referred for background information on such concepts as “lodger
windows”), thel andl or d object contains a notional Wsw N component. In other words, awn_connect
message has been sent to the | andl or d object, and thefield! andl or d- >wi n. i d hasbeenfilledinasa
result.

Note that the value of | andl or d- >wi n. i d must befilled inbeforethewn_i ni t messageis sent to the
EDW N object.

Frequently, thel andl or d object is an instance of a (subclass of) the HWIM bwi n class.

Incidentally, whereasin the Notes example application, each of the three editors has its own unique landlord
window, thereis no general requirement for agiven landlord window to contain only one editor. For
example, if there are three editorsin one dialog, that dialog window (an instance of dI gbox) isthe common
landlord of al three editors.

Aswith all lodger windows, an EDW N object requires to know
the top left offset within the landlord, to the rectangle occupied by the lodger
the width of the rectangle occupied

the height of thisrectangle:

*, top left offset

\

EDWIN

LANDLORD

In the case of EDW N:

the height isworked out, inside thewn_i ni t method, from aknowledge of the number of lines that
areto bevisible at onetime (this defaults to one), the font in which the text in the editor isto be
displayed, and the vertical |eading to be applied with this font

the width is also worked out, by one of avariety of different means, depending on which flags are
set oninitialisation

the top-left offset always has to be supplied explicitly, in pixels- although asis explained below, it
is possible to defer providing this value until later in the overal initialisation process.

The IN_EDWIN and IN_EDWIN_X data structs
Thel N_EDW N and | N_EDW N_X data structs are defined as follows inedwin.cl:

typedef struct
{

UWORD vul en; viewi ng length or width

UWORD f | ags; aut osel ect etc

UWORD maxl en; mexi mum nunber of characters all owed
TEXT contents[1]; rest of initial contents follows in line
} IN_EDW N,;

typedef struct
{
WORD t ot al
WORD t op;
} EDW N_LEADI NG,

12-6

12 EDIT WINDOWS

typedef struct

{

UWORD vi sl i nes; nunber of lines visible in w ndow
P_PQOI NT pos; top left offset relative to |landlord
WORD f ont ; font id

UWORD styl e; font style

EDW N_LEADI NG | eadi ng; total and top-only vertical |eadings
VOl D *doc; docunment object to use

VO D *clip; possi bl e clipboard to use

} I N_EDW N_X; never used in edw ns in dialogs

Whilst the address of an| N_EDW N struct must always be passed to thewn_i ni t method of EDW N, it is
optional whether to pass the address of anI N_EDW N_X struct. Thisis because, depending on various bit
valuesthat can be set inthef | ags fieldinthel N_EDW N struct, default values are assumed for the fields
that can be supplied inthe | N_EDW N_X struct. More precisely:

unless| N_EDW N_VI SLI NES_SUPPLI EDisset inf | ags, thevalueof vi sl i nes istaken as1

the value of pos isignored unless| N_EDW N_POSI TI ON_SUPPLI EDis set (if thisbit isclear, the
value of pos must be supplied by a subsequent call tol g_set _i d_pos - see below)

unless| N_EDW N_FONT_SUPPLI EDis set, the value of Ws_FONT_SYSTEMis assumed for f ont ,
and thevalue G_STY_NORMAL isassumed for styl e

unless| N_EDW N_LEADI NG_SUPPLI EDis set, values of 2 and 1 are assumed for | eadi ng. t ot al
and | eadi ng. t op

unless| N_EDW N_DOC_SUPPLI EDis set, any supplied value of doc isignored, and the edit
window automatically creates a suitable document object (see later in this chapter for further
discussion of document objects)

thevalueof cl i p isignored unlessi N_EDW N_CLI PBOARD is set (specifying that the editor isto
support clipboard functionality).

As can be appreciated, edit boxesin dialogs are never passed an address of ani N_EDW N_X struct; all the
corresponding flags are clear. Thisreflectsthe fact that the EDW N resource struct, defined inhwim.rh,
corresponds just to the | N_EDW N struct, and does not have any fields matching the | N_EDW N_X struct.
The lg_set_id_pos method

In caseitisimpossible (or particularly inconvenient) to give the value of pos, the top-left offset of the editor
withinitslandlord, at the time when thewn_i ni t method hasto be called (thisisthe case when editors are
created within dialogs, as the dimensions of adialog cannot be determined until al the itemsin the dialog
have been initialised), this can be given later, by sending the editor anl g_set _i d_pos message as follows:

P_PO NT pos;

p_send5(edwi n, O LG SET_I D_PGCS, | andl ord->wi n. i d, &os, wi dt h) ;

wherewi dt h isthe width of the region the editor isto display itself upon.

Other edit window initialisation flags

Inadditiontothesix | N_EDW N_XxxX flags mentioned above, there are four other groups of possible values
that thef | ags fieldinthel N_EDW N struct can contain:

values governing the interpretation of thevul en field, if set

values influencing the behaviour of thewn_key method of the editor (ie influencing the way the
editor responds to various keypresses passed to it)

values governing the initial cursor position and initial highlighting (more precisely, these control
the cursor position and the highlighting following initialisationand following any call town_set to
set text into the editor)

miscellaneous other values governing attributes the edit window may or may not possess.

In detail, these ten additional values are as follows:

12-7

OBJECT ORIENTED PROGRAMMING GUIDE

I N_EDW N_VULEN_CHARACTERS if thisissetinf | ags, thevaueof vul en ismultiplied by
the max_wi dt h value for the font to be used by the editor,
and the result is used for the width of the editor

I N_EDW N_VULEN_PI XELS if thisissetinf | ags, thevalue of vul en istaken directly as
the width to be used by the editor (if neither thisflag or the
previous oneis set, then the width is set to the product of
the max_wi dt h value of the font and the max| en valuefrom
the | N_EDW N struct)

I N_EDW N_ACCEPT_TABS unlessthisisset, thewn_key method of the editor will reject
the TAB key

I N_EDW N_ACCEPT_SOFT_HYPHENS unlessthisis set, thewn_key method will regject the
CONTROL-hyphen key (which would otherwise insert a so-
called “soft” hyphen - which would be invisible in most
cases)

I N_EDW N_DI ALLABLE unlessthisis set, thewn_key method will reject the SHIFT -
DIAL and the CONTROL-SHIFT-DIAL keys (if thisis set, the
wn_key method will, respectively, insert anox05 telephone
symbol, or run the system ‘ Append country markup’ dialog)

I N_EDW N_NO_AUTOSELECT if thisisset, theinitial cursor position is set to the start of
the text, and thereisno initial select region

I N_EDW N_AUTO_CUR_END this has the same effect as the previous flag, except that the
initial cursor position is set to the end of thetext (if neither
thisflag or the preceding oneis set, the cursor is placed at
the end of the text and the entirety of the text is selected)

I N_EDW N_LEFT_CURSOR if thisisset, atriangular pointing cursor is displayed down a
left-hand margin (asin the middle of the three editorsin the
Notes example application), using the same font as the main
application but with all bits of the font style cleared apart
fromthe G_STY_DOUBLE bit (if set)

I N_EDW N_TEXT_SEGVENTED if set, this means that the editor will create an EPSEG
document object whenever needed (as opposed to the
EPFLAT object that is created by default - see later in this
chapter for more discussion of document objects)

| N_EDW N_PAGI NATABLE (for advanced use only - see | ater).

A note on the CONTENTS field in the IN_EDWIN struct

Evidently, the | N_EDW N struct only defines one element in apossiblecont ent s[] array. Inorder to
specify initial contents different from just the null string (" " - specified wheni ni t . cont ent s[0] iSzero),
the application needs to make a declaration such as

struct

{
I N_EDW N e;

TEXT rest[LENGTH- 1+1] ;
}oinit;
i.hi.t.e.rraxlenz...;
b._.scpy(&i nit.e.contents[0], plnitString);
edwi n=f _newsend(C APP_ HW M C EDW N, O W INIT, & nit,...);

Note that the array cont ent s[] isignored atogether if the flagl N_EDW N_DOC_SUPPLI EDissetinf| ags.
Apart fromthis, & ni t. cont ent s[0] isalwaysinterpreted as a pointer to azero terminated string.

Alternative means of defining initial text for an editor (these methods can circumvent the limitation to setting
text that is only one paragraph long) include:

12-8

12 EDIT WINDOWS

using thewn_set or other methods of the EDW N class, possibly repeatedly, before the editor is
made visible

setting the text directly into the document object.

Values of special characters in the text
The following values are used to represent special characters within an editor:

7 (SCRLAY_SYM HARD_HYPHEN) aminus sign (sometimes called a*“nonbreaking hyphen”)
that does not count as aword delimiter - normally entered at
the keyboard using SHIFT-CONTROL-hyphen

8 (SCRLAY_SYM SOFT_HYPHEN) a soft (sometimescalled an “optional”) hyphen - normally
invisible, but will transform into avisible hyphen to allow a
word to wrap over two lines at the point, if required -
normally entered at the keyboard using CONTROL-hyphen

15 (SCRLAY_SYM HARD_ SPACE) a space that does not count as aword delimiter - normally
entered at the keyboard using SHIFT-CONTROL-SPACE

0 ('\0") aparagraph end - normally entered at the keyboard using
ENTER

10 ("\n") aforced line break - normally entered at the keyboard using
SHIFT-ENTER

9 ("\t") atab character - normally entered at the keyboard using the
TAB key

5 (Ws_SYMBOL_PHONE) atelephone character - normally entered at the keyboard

using SHIFT-DIAL.

Apart from the above values, characters with values less than 32 should in general not be set into edit
windows. Notein particular that characters with values lessthan 4 are all treated, by low-lying code (in the
OLIB library) asparagraph delimiters - with potentially bizarre results, given that the formatting code in
FORM only recognises the character value 0 as a paragraph delimiter.

Note that no characters are written to the buffer to denote the location of line ends caused merely by word-
wrap. These locations (sometimes called “ soft carriage returns’) have no fundamental significance:

they change whenever the window size changes (eg when the status window is altered) or the
display font is“zoomed”

they are calculated dynamically when needed, and are held in adifferent part of property of the edit
window (actually in the SCRLAY screen layout component).

A note on the MAXLEN field in the IN_EDWIN struct

For clarity, it should be emphasised that the max| en fieldinthe | N_EDW N data struct specifiesthe
maximum number of characters the editor can contain, not counting any final terminating character.

For example, an editor withmaxI en set to 6 could contain the string” abcdef " (where the editor would in
fact also store aterminating zero at the end of the string.

However, if the editor was multi-line, it could not store the text" ab\ Ocdef " (representing a paragraph of
two characters followed by one of four characters): that would require anmax! en of (at least) 7.

The wn_sense method

For many uses of edit windows, the following model is sufficient to explain the storage of text within the
editor: thetext is stored as a zero terminated string, and thewn_sense method of EDW N provides access to
this buffer, asfollows:

12-9

OBJECT ORIENTED PROGRAMMING GUIDE

typedef struct

{

TEXT *buf;
UWORD | en;
} SE_EDWN;

SE_EDW N sense;

p_send3(edw n, O WN_SENSE, &sense) ;
p_scpy(&store[0], sense. buf);

Note however that the buffer whose address (sense. buf) is obtained in this way must always be regarded
asread only. In order to change the contents of this buffer, the various methods of EDW N (or methods of
components of EDW N) have to be used.

Second, note that the buffer used by the editor may move as more text is added. Thisis because the buffer
isresized according to how much text it contains. Therefore, it would be agrave mistake to hold onto the
address of this buffer, and assume that thiswill still be valid after more text could have been added into the
editor.

Third, as mentioned above, paragraph ends (in multi-line editors) areinternally represented as zeros.
However, code such as

p_send3(edw n, O WN_SENSE, &sense) ;
p_scpy(&store[0], sense. buf);

will only succeed in copying out text as far as the first embedded zero. For thisreason, the Notes example
application essentially uses the following code instead:

SE_EDW N sense;

p_send3(edw n, O WN_SENSE, &sense) ;
p_bcpy(&store[0], sense. buf, sense. | en);

Finally, note that this still assumesthat the text is stored in aflat buffer. This applies by default, but the
initialisation flag1 N_EDW N_TEXT_SEGVENTED can be used to specify that the text is stored in a segmented
buffer. (Roughly speaking, the larger the quantity of the text, the more pressing the need to storeitina
segmented buffer - to cut down on the amount of datathat needs to be shuffled along each time asingle
character istyped into the middle of the document.) If thetextis stored segmented, the result of the
wn_sense method is undefined, and other means are required to sense the contents of the editor.

The wn_set method

Thewn_set method can be used to completely replace the contents of an EDW N object.
It uses the same SE_EDW N struct as doesthewn_sense method:

SE_EDW N set ;

b._.sendS(edwi n, O WN_SET, &set);

After thismethod, the contents of the editor aretheset . | en charactersin the buffer pointed to by

set. buf . (Theoperation of the method involves copying these characters into the internal storage buffers
of the edit window.) All previous contents are discarded. The highlight and the cursor position are
adjusted according tothel N_EDW N_AUTO _CUR_END and| N_EDW N_NO_AUTOSELECT flags specified on
initialisation.

The wn_key method
The way to pass keypresses onto an edit window isto send awn_key message as follows
p_send4(edw n, O WN_KEY, keycode, nodi fiers);
The method actually returns one of the following two values:
WN_KEY_CHANGED - the contents of the edit window changed as aresult of the keypress

WN_KEY_NO_CHANGE (which isthe same asFAL SE) - the contents of the edit window did not
change as aresult of the keypress.

In most cases, however, thisvalue will be ignored by application code that passes the key to the window.

12-10

12 EDIT WINDOWS

Something else that is automatically suitable in most uses of EDW N is the behaviour of thewn_key method
when the keypress passed to the editor

causes an out-of-memory error, or
would cause the maximum capacity of the editor to be exceeded.

See the discussion of theew | eave method below for more information on how EDW N copes with these
two cases.

The wn_emphasise method

Although the need for thewn_key method is clear, the need for thewn_enphasi se method may be less so.
However, as mentioned several timesin this manual, thereis a definite need for applicationsto track the
“emphasis’ asit moves around an application:

into the menu bar and out again
into the Help subsystem and out again, or into dialogs and out again
around various parts of the main viewing screen of the application.

The parametersto thewn_enphasi se method of EDW N are the same as those for any other window class
within HWIM:

p_send3(edwi n, O WN_EMPHASI SE, f | ag) ;

wheref | ag iseither FALSE, to indicate that emphasisis moving away from the edit window, or TRUE, to
indicate that emphasis is moving to the edit window.

The wn_draw method

Thewn_dr aw method shareswithwn_key andwn_enphasi se the feature that landlord windows for edit
windows invariably have to passthese messages onto their EDW N components.

Asfar asEDW Nisconcerned, there are no additional parametersto thewn_dr aw method (in particular, the
entire visible portion of the editor has to be redrawn every time).

Additional EDWIN methods

This section explains some additional methods of EDW N:
methods for inserting text, finding text, and replacing text
the copy and insert (“ paste”) clipboard methods
theew_eval uat e method
additional setting and sensing methods
how to detect if the contents of an edit box has been changed
edit boxes set to be “read only”

theew_| eave method for notifying run-time errors.

The ew_insert method

Thefollowing code will resultinthebl en characters at * buf being inserted into the editor with handle
edwi n:

p_send4(edw n, O EW | NSERT, buf, bl en);

The characters are inserted at the cursor position (any selection being cancelled first), and the cursor is
advanced to the end of the charactersinserted.

Theew_i nsert method callsew_I eave if any error occurs.

12-11

OBJECT ORIENTED PROGRAMMING GUIDE

The ew_find method

It is possibleto request an editor to search for given text within itself. Thefollowing codeis used
val =p_send4(edwi n, O EW FI ND, pstr, fl ags);
wherepst r pointsto azero-terminated string of the text to match, and possible bit valuesinf | ags are:

EWF_BACKWARDS to search backwards from the cursor position (the default is to search forwards
from the cursor position)

EWF_CASESENS to make the search case sensitive (the default is for the search to be case
insensitive).

Theew fi nd method returns FALSE if no match was found, and otherwise TRUE - in which case the
matched text is highlighted as the new select region. Theew_f i nd method isintelligent enough to code
with repeated callstoew_f i nd without finding the same text repeatedly.

Note that matches across paragraph boundaries are not possible (thisis consistent with the search string
being zero terminated: it cannot contain an embedded zero).

The ew_replace method

Theew_r epl ace method isin someways similar totheew_i nsert method, but it is designed primarily to
implement a‘Replace’ menu command (in conjunction with theew_f i nd method, which is designed to
implement a‘ Find’ menu command). Whereasew_i nsert cancels any selection before inserting the
specified characters, ew_r epl ace starts by deleting any selection. Another differenceisthatew i nsert
takesitsinsertiontextinthe (buf, | en) form, whereasew r epl ace expects azero terminated string.
Finally, whereasew_i nsert alwaysleaves cursor at the bottom end of the selection region consisting of
the text just inserted, ew_r epl ace allowsthe cursor to be positioned at either end of this selection-in order
to support repeated forward or backward text replacement, without entering an infinite recursion:

p_send4(edw n, O EW REPLACE, r epl ace, backwar ds) ;

The replacement string is specified by the zero-terminated string * r epl ace, and the flagbackwar ds
specifies whether the cursor should be placed at the top end of the selection (if backwar ds iSTRUE) or at
the bottom end.

The method attempts to insert the replacement text first, before deleting the existing selection (if any), so
that any out-of-memory error is handled automatically without the loss of any text.

Theew repl ace method callsew_| eave if any error occurs.

The ew_replace_clip method

Theew repl ace_cl i p methodis provided to implement a‘ Copy text’” menu command, in conjunction with
theew_past e_cl i p method (discussed next), which is provided to implement an ‘ Insert text’ menu
command (sometimes called a“‘ Paste’ menu command).

Both these methods presuppose that the flag1 N_EDW N_CLI PBOARD was set on initialisation - otherwise
the editor will panic (panic 55). Note however that thel N_EDW N_CLI PBOARD flag should not be set
unnecessarily (ieif no callstoew_repl ace_cl i p orew_paste_cl i p areto be made), since this entails an
additional memory overhead.

If I N_EDW N_CLI PBOARD is set on theinitialisation of the editor, the value of thecl i p field in the
I N_EDW N_X initialisation struct becomes significant:

if thisisnon-NULL, it istaken as the handle of a suitable clipboard object to be used by the editor

otherwise, the editor creates a clipboard object for its own use, which isin fact an instance of the
OLIB EPFLAT class (unlessthe flagl N_EDW N_TEXT_SEGVENTED was set on initialisation, in
which case an instance of the OLIB EPSEG classis used).

In most cases, settingcl i p toNULL will be perfectly sufficient. The main exception isif the clipboard object
has to persist beyond the lifetime of the editor (or if the clipboard is to be shared between two editors that
both exist at the sasmetime). Note herethat thedest r oy method of EDW Nsendsadest r oy messagein
turn to any clipboard object that the editor itself created - whereas clipboard objects specified viaanon-
NULL value of thecl i p field of thel N_EDW N_X struct passed at initialisation donot get destroyed in this
way (that responsibility fallsto the owner of the editor).

12-12

12 EDIT WINDOWS

An application that wishes to create a clipboard for external purposes can use code such as
clip=f_newsend(CAT_APP_OLI B, C_EPFLAT, O_EP_I NI T, max| en+1) ;

where the reason why 1 is added to max!| en (the value used to initialise the editor itself) isthat space hasto
be reserved, in the document object, for the final paragraph delimiter aswell. In general, any realisable
subclass of the OLIB classEPROOT can be used as the clipboard.

Note that there is no EDW N method corresponding directly to any ‘ Cut’ menu command. Thereis of course
no such menu command on the ROM -resident Series 3 applications; the way that text is“cut” into the
clipboard isthat the user highlights the text and simply pressesDELETE. Thiskeypressisreceived by the
EDW N code in thewn_key method, and thisisthe location of code to copy the deleted text into the
clipboard (if present).

Having said all that, in practice use of theew_r epl ace_cl i p method issimplicity itself. For example, the
corresponding code in the Notes example application is just

METHOD VOI D noconman_ncoe_copy(PR_NOCOVMAN *sel f)

{

CheckEdi ting(self);

if (!(p_send2(DatApp3, O EW REPLACE_CLIP)))
hl nf oPri nt (NOSTR_NO_TEXT_COPI ED) ;

el se
hl nf oPri nt (NOSTR_TEXT_COPI ED) ;

}

Inthis example, Dat App3 holds the handle of the editor.

Theew repl ace_cl i p method in fact returns the length of the current selection - which istherefore zero if
thereis nothing to copy.

The ew_paste_clip method

Use of theew_paste_cl i p method isjust assimple. The corresponding code in the Notes application is
METHOD VO D noconman_ncoe_i nsert (PR_NOCOMMAN *sel f)

{

CheckEdi ti ng(sel f);

if (!(p_send2(DatApp3, O EW PASTE_CLI P)))
hi nf oPri nt (NOSTR_NO TEXT | NSERTED) ;

}

Theew past e_cl i p method returnsthe length of the text in the clipboard - which iszero if there is nothing
to insert.

The ew_evaluate method

Theew_eval uat e method can usefully be discussed alongsideew _r epl ace_clip andew_paste_clip
because

an ‘Evaluate’ menu command would normally be found alongside those for ‘ Copy text’ and ‘ Insert
text’

the usage of this method is, in practice, equally as straightforward (although, in all three cases, a
great deal happens behind the scenes).

Theew_eval uat e method can, however, be used without the editor having been initialised with
I N_EDW N_CL| PBOARD.

The code in the Notes application that implements the * Evaluate’ menu command thereis
METHOD VO D noconmman_ncoe_eval uat e(PR_NOCOVMAN *sel f)

{

CheckEdi ti ng(sel f);

p_send2(Dat App3, O EW EVALUATE) ;
}

Note that whereas it is the responsibility of the application to detect “errors” (such asNothing to insert) in
thecaseof ew_repl ace_clip andew paste_cli p, syntactical errorswithin the string to be evaluated are
signalled by code withintheew_eval uat e method - with the cursor being positioned to the error and an
appropriate hi nf oPr i nt being executed.

12-13

OBJECT ORIENTED PROGRAMMING GUIDE

The ew_set method

For some purposes, the additional control provided by theew_set method (as compared to thewn_set
method) may be helpful:

typedef struct

{

UWORD f | ags;

SE_EDW N t xt ;

UWORD cursor; cursor (noving point of select)
UWORD anchor; anchor point (fixed end of select)
} SET_EDW N;

SET_EDW N set;
p_send3(edw n, O EW SET, &set);

Aswell as containing an SE_EDW N struct within itself, the SET_EDW N struct evidently also allows the
cursor and select region to be defined more precisely. Thisisgoverned by the possible valuesinf | ags:
if SET_EDW N_EMPTY is set, thisis merely a convenient way to empty the contents of the editor
if SET_EDW N_TXT isset, acall tothewn_set method of the editor is effectively made
if SET_EDW N_SEL_ALL is set, the entire contents of the editor are selected
if SET_EDW N_CUR_END is set, the cursor is set to the end of the document

if SET_EDW N_ANCHOR is set, the anchor point of the selection (the non-moving end) is set to
document offset set . anchor

if SET_EDW N_CURSOR is set, the cursor (which is also the moving end of the selection, if one
exists) is set to document offsetset . cur sor.

The ew_sense method

Whereasthe ew_set method allows more control, compared town_set , over features of an edit window
that can be set, theew_sense alows additional editing details (namely, the two ends of the select region) to
be sensed:

typedef struct
{

UWORD cursor; cursor (noving point of select)
UWORD anchor; anchor point (nmay equal cursor)
} SENSE_EDW N;

SENSE_EDW N sense;
p_send3(edw n, O WN_SENSE, &sense) ;

In fact, this method always returns the top end of the select region (if any) insense. anchor, and the
bottom end insense. cur sor. If thelength of the select region is presently zero, both the two fieldsin the
SENSE_EDW N return the cursor position.

The concept of document offset

Boththeew set andew_sense methods make use of the concept of document offset. Infact, thisisa
fundamental notion for the EDW N class asawhole. Theideaisthat although features like line number and
line offset vary according to the zoom state and status window setting, the document offset of agiven
location with the editor remains constant, regardless of how the contents are viewed.

For example, suppose an editor has its width decreased and its display font zoomed larger, causing the
word-wrap to change. Then the possible cursor location just in front of, say, the ‘f’ of “four”

|
One two three four One two i
\
five six \ three-four i
\ - s -
\ five six |
\\ ////
\ i
\ -,
\ pid
v 7
\ -

12-14

12 EDIT WINDOWS

ison thefirst linein one case but on the second linein the second case. Theline offset of thislocation also
changes, but the document offset remains constant: the location has document offset 14 in both cases.

Allowed values of document offset

If there aren charactersin a document - not counting the final terminating character zero - then there are
precisely n+1 alowed character offsets, ranging in value from 0 ton.

Note that the cursor cannot be positioned beyond the final terminator (ie at document offsetn+1). Norin
fact can the cursor ever be positioned beyond the final character on any line - it always repositions
automatically in these cases to the very beginning of the following line.

The EDWIN.CHANGE property

Although many parts of the property of EDW N should be regarded as private, the change field is open to
direct read-write manipul ation by application code.

For example, the following routine in the Notes application checks whether any change has been made to the
editor in agiven window, and if so

senses the new text, and recordsit
resets the value of edwi n. change t0o FALSE:

LOCAL_C VO D RecordChange(PR_NOW N *wi n, LENBUF *1| b)

{
PR_EDW N *edwi n;
SE_EDW N sense;

edwi n=wi n->nowi n. edwi n;
if (!(edw n->edw n.change))
return;
p_send3(edw n, O WN_SENSE, &sense) ;
| b->buf =f _real |l oc(l b->buf, sense. | en);
| b->l en=sense. | en;
p_bcpy(l b->buf, sense. buf, sense. | en);
edwi n- >edwi n. change=FALSE;

}

In fact there are two different Ew CHANGE_XXX bit flags defined in edwin.cl: Ew CHANGE_SI NCE_SAVED and
EW CHANGE_SI NCE_PAGI NATE, with the valuesox01 and 0x02 respectively. Further, whenever any code
inside amethod of EDW N changes the contents of the editor, all the bits (oxf f f f , symbolically

EW CHANGE) are set inedwi n. change. Thisallows an application greater control over monitoring the
extent to which changes may or may not have taken place.

“Read-only” edit boxes and the ew_readonly method

Before EDW N code ever allows a change to be made, by the user, to the contents of the edit box, the value
of the PR_EDW N_READONLY bitintheedwi n. f | ags field in property istested. If thisis set, by default a

beep is emitted and the thread of execution isterminated - as can be seen from the following utility routine
called frequently internal to EDW N code:

LOCAL_C VO D CheckNot ReadOnl y(PR_EDW N *sel f)

{
if (self->edwi n.flags&PR EDW N _READONLY && p_send2(sel f, O EW READONLY))

{
hBeep();
p_l eave(RUN_ACTI VE_USED) ;

}
}

Note that there is no formal mechanism whereby the PR_EDW N_READONLY bit inedwi n. f | ags can be set
or cleared, other than by the application directly manipulating thisbit. (Care must be taken, however, to
leave all other bits in thisfield well alone.) Note further that this bit iscleared at the end of

edwi n_wn_i ni t, so that application code should only ever attempt to set it after the return of thewn_i ni t
message to the editor.

Theew_readonl y method is declared inedwin.cl to be equal top_t r ue - in other words, it always returns
TRUE. An application can subclass thisto make some additional tests. For example, code shared between
the Program Editor and Word Processor applications supplies the following replacement:

12-15

OBJECT ORIENTED PROGRAMMING GUIDE

METHOD | NT opl wi n_ew _readonl y(PR_OPLW N *sel f)
{
if (IsCQutlined())

{
Killoutline(self);
return(FALSE) ;

}
return(TRUE);

}

where the effect isto cancel any outline state before allowing any change to take place in the document,
whereas other reasons for the document being read-only continue to result in TRUE being returned.

The ew_leave method

Whenever there isarun-time failure following user action that causes charactersto be added to the
document (eg insidethewn_key, ew_i nsert, orew_paste_cli p methods), acall ismadetoew | eave.

For example, the code for edwi n_ew_past e_cl i p isasfollows:
METHOD | NT edwi n_ew_paste_cli p(PR_EDW N *sel f)

{
UWORD | en;
I NT err;

CheckNot ReadOnl y(sel f);
| en=p_send2(sel f->edwi n.clip, O EP_SENSE LEN);
if (len)

{

if ((err=p_entersend4(self->edw n.doc, O EP_PASTE,
&sel f->edwi n. cpos, sel f->edwi n.clip))!=0)
p_send3(sel f, O EW LEAVE, err);
sel f->edwi n. cl en+=| en;
Edwi nFwdChange(sel f);
Set Edwi nSel ect (sel f, sel f->edwi n. cpos-len,|en);

return(len);

}

The significance of thisis so that one particular error message can be trapped - namely the “ Overflow” error,
E_GEN_OVER, that document objects such asEPFLAT generate when an attempt is made to insert more than
the allowed maximum number of characters. Codeintheew | eave method translates this particular error
into something more meaningful to the user:

METHOD VO D edwi n_ew_| eave(PR_EDW N *sel f, I NT err)

{

if (err==E_GEN_OVER)
{
hBeep();

if (self->edwin.flags&R EDW N_NOTI FY_OVERFLOW
hl nf oPri nt (- SYS_EDI T_NCHARS) ;
err =RUN_ACTI VE_CLEANUP_NONQOTI FY;

f_leave(err);

}
(If desired, an application could modify this behaviour by subclassing this method.)

In English, the text for the system resource - SYS_EDI T_NCHARS is “Maximum number of characters
reached”. Ascan be seen, thismessageis displayed only if the PR_EDW N_NOTI FY_OVERFLOWflagissetin
edwi n. f| ags. By default, thisis set for all editorswhich set either of thel N_EDW N_VULEN_XXX flags on
initialisation.

Controlling the layout and formatting

The mechanisms described in this section require various measures of knowledge of the SCRI MG and
SCRLAY components of EDW N. In fact, on the whole, these mechanisms are not methods of EDW N itself,
but involve sending messages to the SCRI MG and/or SCRLAY objects.

12-16

12 EDIT WINDOWS

Amongst other things, these mechanisms allow:
changes in which kinds of hidden symbols are displayed
setting the width of the cursor (eg to turn it off completely - if desired)
changesin the font used to display the text
changesin the size of window
changes in the margins applying to paragraphs (including the ability to disable word-wrapping)
setting tabstops.

An introduction to SCRLAY

Asmentioned already, the character content of an edit window is stored within a so-called “ document
object”, which is an instance of a subclass of the FORM EPDOC class. The document object can, for the
most part, be thought of as simply an extended buffer (possibly segmented), containing all the charactersin
the document, together with paragraph delimiters, tab characters, and forced line breaks stored in line.

By contrast, the document object hasno knowledge of
tab stop positions
whether various special characters (spaces, tabs, carriage returns, etc) are shown or hidden
left, right, and first-line margins applying to paragraphs
interline and interparagraph spacing
the “keep with next”, “keep together”, and “ start new page” attributes of paragraphs
the fonts to be used to display (and/or print) characters.
These attributes of an editor are supervised by a SCRLAY (“screen layout™) sub-component.
More precisely, from the point of view of SCRLAY, screen layout consists of
alinked list of paragraphs, each of which consist of
alinked list of lines, each of which consists of
alinked list of so-called tboxes.

There are three reasons why aline can be split into different tboxes:

physical segmentation - the characters making up the line happen to be stored in two different
physical buffers at that point (this can only ever apply, for editors, if the flag
| N_EDW N_TEXT_SEGMENTED is set on initialisation)

stylistic segmentation - where there is a change of font, font-style, or character visibility

enforced segmentation - where alimit of 236 characters per tbox is applied, to simplify visual
display of thetext of atbox on the screen by means of the Window Server function
gPri nt BoxText (thevalue236 issymbolically known asws_PRI NT_BOX_TEXT_MAX_LEN).

SCRLAY structure definitions
The screen layout is held in property of SCRLAY using the following structures (defined in scrlay.cl);

typedef struct que_tbox
{
struct scrlay_tbox *next;
struct scrlay_tbox *prev;
} QUE_TBOX;

12-17

OBJECT ORIENTED PROGRAMMING GUIDE

typedef struct scrlay_tbox

{
QUE_TBOX hd;
WORD wi dt h; /* width of box in pixels */
UWORD t | en; /* number of doc positions, with mask info */
} SCRLAY_TBOX;
typedef struct que_line
{
struct scrlay_Iline *next;
struct scrlay_line *preyv;
} QUE_LI NE;
typedef struct scrlay_line
{
QUE_LI NE hd;
QUE_TBOX t boxs;
WORD i ndent ; x pixel position of left of 1st tbox
UWORD | en; nunber of addressible content positions
UBYTE i sl ast; TRUE if last line in paragraph

UBYTE new_page; TRUE if start

} SCRLAY_LI NE;

of page

typedef struct
{
struct scrlay_para *next;
struct scrlay_para *prev;
} QUE_PARA;

que_para

typedef struct scrlay_para

{

QUE_PARA hd;
QUE_LI NE li nes;
} SCRLAY_PARA;

An important efficiency measure is that SCRLAY only contains the layout information for the visible portion
of the data - ie the data currently visible on the screen (though it turns out simpler also to maintain the data

for any portion of thefirst visible paragraph that is off the top of the screen).

Thus SCRLAY property contains the document offset of the top of the layout structure it currently

possesses. From this, it is possible to calcul ate the document offset of the start of any line, or the start of

any tbox, within the screen layout.

Aswell as containing the screen layout data, SCRLAY contains the logic for re-cal culating screen layout,

according to changesin, for example, document content or paragraph styling. Finally - and thisis of
particular concern to users of edit boxes- SCRLAY property contains a SCRLAY_STYLE “global style
definition” data structure:

typedef struct

{
UWORD fi d; font id for wserv or typeface for printer
UWORD styl e; font style (eg bold)
UWORD hei ght; hei ght of printer font in decipoints
} SCRLAY_FONT;
typedef struct
{
UWORD | eft; Left margin
UWORD ri ght; Ri ght margin
UWORD i ndent ; Left margin of first line in para
UWORD al i gn; Alignment (left, right, centre or justified)

} SCRLAY_MARGI NS;

typedef struct

{

UWORD i ne; Space between paragraph |ines

UWORD above; Space above paragraph

UWORD bel ow; Space bel ow par agraph

UWORD f | ags; Keep together/next and start new page

} SCRLAY_SPACI NG;

12-18

12 EDIT WINDOWS

typedef struct

{
UWORD x; tab position
UWORD t ype; tab type (left, right, centre or repeated)

} SCRLAY_TABSTOP;

typedef struct
{
UWORD nt ab; number of tabs
SCRLAY_TABSTOP t ab[SCRLAY_NTABS_MAX] ;
} SCRLAY_TABS;

typedef struct

{

SCRLAY_MARGI NS *mar gi ns; Paragraph margins
SCRLAY_TABS *t abs; Par agr aph tabs
SCRLAY_SPACI NG *spaci ng; Par agr aph spaci ng

} SCRLAY_PDATA;

typedef struct

UBYTE options; Layout options

UBYTE printer; TRUE if printer |ayout
SCRLAY_PDATA pd; G obal margins, tabs, spacing
SCRLAY_FONT *font; G obal font id and style

UBYTE *fwt ab; G obal font table or NULL

UWORD scr pwi dt h; W dth of screen in printer units
SCRLAY_FONT *sfont; G obal screen font id and style

} SCRLAY_STYLE;

Example: changing visibility of special characters

The following code shows an example of interaction with the SCRLAY_STYLE data structure inside SCRLAY.
The code either hides or shows specified so-called “special characters”:

LOCAL_C VO D ShowSynbol s(PR_EDW N *edwi n, | NT symbol s)

{
SCRLAY_STYLE styl e;

p_send3(edw n->edw n. scrl ay, O SL_SENSE, &styl e);

styl e. opti ons=synbol s;

p_send3(edw n->edwi n.scrl ay, O SL_SET, &styl e);

p_send3(edw n->edw n. scring, O_SI _STYLE_CHANGED, SCRI MG_STCHNG_DOCC) ;
}

The basic pattern hereis: sense the global layout data, make the required changes, set the new values, and
then notify SCRI MG of the change (see | ater for further discussion of SCRI MG).

Thegivenroutineiscompleteinitsown right, but for it to be used, the allowed values of theopt i ons fidd
in SCRLAY_STYLE property have to be known. These can be found out from scrlay.cl:

SCRLAY_SHOW TABS 0x01
SCRLAY_SHOW SPACES 0x02
SCRLAY_SHOW CRS 0x04
SCRLAY_SHOW HYPHENS 0x08 Show optional hyphens
SCRLAY_SHOW LFS 0x10

SCRLAY_W DOW ORPHAN 0x20 Set to enabl e wi dow & orphan suppression

Default values of SCRLAY_STYLE in edit windows

Note that many of thefieldsin SCRLAY_STYLE are stored by indirection. By default, the indirected data
existsin suitable slots within EDW N property - which contains a SCRLAY_MARGI NS mar gi ns fieldand a
SCRLAY_FONT f ont field.

Thefollowing extract from edwi n_wn_i ni t shows how thisworks:

12-19

OBJECT ORIENTED PROGRAMMING GUIDE

SCRLAY_STYLE styl e;
SCRLAY_DOC doc;

styl e. opti ons=SCRLAY_SHOW TABS;

styl e. printer=FALSE;

styl e. pd. margi ns=(&sel f - >edwi n. mar gi ns) ;
style.sfont=style.font=(&sel f->edwi n.font);

styl e. pd.tabs=(SCRLAY_TABS *) (&sel f->edwi n. font. height); /* ntab = 0 */
style. fwtab=NULL;

styl e.scrpwi dt h=0;

p_send3(self, O EWINI T_STYLE, &styl e); /* chance for subclassers */
p_send4(sel f->edw n.scrl ay=h_fnew(C_SCRLAY), O SL_I NI T, &doc, &styl e)

(seelater in this chapter for a discussion of the SCRLAY_DOC structure).

Notein particular that, by default, no tabstops are set up. (Thereisaminor piece of trickery here, relying on
the fact that, for screen display purposes, thef ont . hei ght field isaways zero.)

Changing from the default layout style

As can be seen above, one way to change from the default layout styleisby acall tosl _sense followed by
onetosl _set.

Another approach isto subclasstheew_i ni t _styl e method of EDW N - since acall to thisis made just
prior to the SCRLAY object is actually created and initialised (see the code fragment given earlier). By
default, theew_i ni t _styl e method equalsp_dumny, and does nothing.

Finally, al the above concerns so-called global style for the editor - style applying by default to all portions.
However, the formatting code within SCRLAY is open to the possibility of local variationsin style. Thisis
discussed further in the section on document objects below.

An introduction to SCRIMG

As noted above, changing the layout style by means of acall tosl _set isnot, by itself, sufficient to cause
an actual change in the formatted layout of the editor. In addition, the screen image SCRI MG object has to
be notified - hencethesi _st yl e_changed message in the example given.

In general, SCRI MG caters for the concepts of
cursor position and select region
emphasis on or off
knowledge of the (lodger) window to be drawn to

knowledge of how this window region may break down into a possible left gutter (“labels’) region,
and apossible “line cursor” margin, aswell asthe main drawing area

width of the text cursor, when displayed, as well asthe style of any margin line cursor
parameters affecting the way horizontal scrolling takes place

the state of background reformatting (ie which parts of the layout are up-to-date, and which need
to be re-evaluated as soon as time allows).

Additionally, SCRI MG contains the logic for the actual displaying (drawing and redrawing) of the edit
window, for recalculating layout information (ie for driving the SCRLAY object), for freeing layout structures
no longer required (since the visible portion of the document has altered), and for smoothly scrolling the
display vertically whenever appropriate.

Infact, it may well appear that SCRI MG contains the core logic for EDW N itself, and there is much to be said
for thisview. Several methods of EDW N simply delegate responsibility to SCRI MG by passing on an
appropriate message. However, it may be worth pointing out afew of the general differences between the
overall EDW N object and its SCRI MG component:

SCRI MG (and SCRLAY and indeed any classin FORM) is completely independent of any of the
conceptsin HWIM, and can be utilised eg on the MC range of computers, where the front-line user
interface library (WIMP) issignificantly different from the HWIM library

SCRI MG can be utilised independently of EDW N, to provide so-called “ edit-li ke windows”

12-20

12 EDIT WINDOWS

EDW N may be viewed as an organiser of the cooperation between a SCRI MG, a SCRLAY, and an
EPDOC; thewn_i ni t method of EDW N involves a substantial amount of “form filling”, in which
these sub-components are properly initialised in a suitable rel ationship to one another

EDW N contains an extensivewn_key method, which is actually one of the longest methodsin the
whole of the HWIM library

EDW N adds on significant clipboard functionality, evaluation functionality, link-paste
functionality, and find and replace functionality

amazingly (as discussed in more detail later in this chapter), SCRI MG has no direct knowledge
whatsoever about the document object.

SCRIMG structure definitions

The“window” or “drawing environment” aspects of a SCRI MG object are stored in property in an
SCRI MG_W N data structure:

typedef struct

{

UWORD wi d; wi ndow | D

P PO NT tlI; top left corner of area being drawn to

WORD nl i nes; nunber of text |ines

UBYTE | height; line height in pixels

UBYTE | ascent; distance fromtop of line to text base line
WORD wi dt h; total width in pixels (margin,line cursor,text)
WORD nar gi n; wi dth of |abel margin in pixels

WORD | cf ont; line cursor font (or zero for no |line cursor)
UBYTE cwi dt h; text cursor width

UBYTE | cstyle; line cursor style

UBYTE | ccode; |'ine cursor character code

UBYTE hscrl x; horizontal scroll x junp

UBYTE hscrim hori zontal scroll margin

UBYTE dr awpl abs; draw trailing para |abels after formatting if set

} SCRI MG W N;

Just asthe SCRLAY_STYLE data held by a SCRLAY object can be sensed viaans| _sense method and set
viaansl _set method, so alsoisthereansi _sense method to sense the SCRI MG_W N dataheld by a
SCRI MG object, and ansi _set method to set this data (see later for examples of these calls).

Infact, asthecodefor scri mg_si _set makesclear, thesi _set method takestwo parameters- the first
being (if non-NULL) the pointer to a SCRI MG_W N struct, and the second being (if non-NULL) the handle of
the associated SCRLAY object:

12-21

OBJECT ORIENTED PROGRAMMING GUIDE

METHOD | NT scring_si_set (PR_SCRI MG *sel f, SCRIMG WN *wi n, VO D *I| ay)

/*

Optionally set the window and the |ayout object (win and lay may be NULL)
and return the width (in pixels) of the text area.

Also waits for an background formatting to die down.

*/

{
(PR_SCRI MG *) Dat Scri ng=sel f;
Conpl et eFormatting();
if (lay)
sel f->scring. | ay=lay;
if (w n!=NULL)

{
sel f->scring. gc. f ont =\W6_FONT_BASE;
sel f->scring.gc.styl e=G_STY_NORMAL;
sel f->scrinmg.wi n=*wi n;
if (self->scrinmg.win.lcfont)

sel f->scring. | cw dt h=gText W dt h(sel f->scring.wi n.Ilcfont,

sel f->scrinmg.win.lcstyle, &elf->scring.w n.|ccode, 1) +2;

sel f->scrinmg. ntwi dt h=sel f->scring.w n. margi n+sel f->scring. | cw dth;
sel f->scring. xo=sel f->scring. ntrwi dt h+sel f->scring.win.tl.x;
sel f->scrinmg. txwi dt h=sel f->scring.w n.w dth-sel f->scring. nrw dth;

if (self->scrinmg.crs.line>self->scring.wn.nlines-1)

sel f->scrinmg.crs.line=self->scrinmg.wn.nlines-1,;
if (self->scring.!lay)

p_send3(sel f->scring.lay, O SL_SET_LI NES, sel f->scring.w n.nlines);
return(sel f->scring.txw dth);

}

During initialisation, EDW N takes care of setting up appropriate values for the SCRI MG_W N data structure -
based (as can be imagined) on the datain thel N_EDW N and | N_EDW N_X structures.

Example: changing the width of the text cursor

The following code shows an example of interaction with the SCRI MG_W N data structure inside SCRI MG.
The code adjusts the width that the flashing text cursor will have, when shown (eg, it could be used to set
the width to zero - effectively to hide the cursor altogether):

LOCAL_C VO D Set Cursor W dt h(PR_EDW N *ebH, | NT cwi dt h)
{
SCRI MG_W N wi n;

p_send3(edw n->edw n. scri mg, O_SI _SENSE, &wi n) ;

wi n. cwi dt h=cwi dt h;

p_send4(edw n->edw n. scrinmg, O_SI _SET, &wi n, NULL) ;
}

Changing the font used by an editor

Theew _set _f ont method of EDW N can be used to change the font used for the display. The code
follows:

METHOD VOI D edwi n_ew_set _font (PR_EDWN *sel f, | NT font, U NT styl e, EDW N_LEADI NG
*| eadi ng)

/*

Expected to be acconpanied by call to ew set_size

*/

{
SCRI MG W N wi n;
G_FONT_I NFO fi nf o;

sel f->edwi n.font.fid=font;

sel f->edwi n. font. styl e=styl e;

gFont I nfo(sel f->edwin.font.fid, self->edwi n.font.style, & info);
p_send3(sel f->edwi n. scring, O_SI _SENSE, &wi n) ;

wi n. | hei ght =fi nf o. hei ght +| eadi ng- >t ot al ;

wi n. | ascent =fi nf 0. ascent +| eadi ng- >t op;

p_send4(sel f->edwi n.scrinmg, O Sl _SET, & n, NULL) ;

}

12-22

12 EDIT WINDOWS

Note however that, as the comment in the code states, this call by itself will generally be insufficient to
effect the font change. Additionally:

in many cases, the size of the window region may change (quite likely when the font change has
been triggered by a‘Zoom’ menu command)

asuitable request message will have to be passed in due course to SCRI MG to request it to
recal cul ate the screen image - which will involve invalidating some or al of the formatting
information maintained by SCRLAY.

See later for more information about notification and request messages to SCRI MG, The main point hereis
that adjusting the SCRI MG_W N data does not, by itself, trigger arecalculation; rather, thisis delayed until
all necessary adjustments have been made, to avoid needlessrepeated re-calculations.

Note incidentally that the new font details do not have to be passed on explicitly to SCRLAY. Recall that the
various SCRLAY_FONT data structures required by SCRLAY are referenced indirectly: the SCRLAY_STYLE
data structure actually contains, by default, pointersto theedwi n. f ont structure inside EDW N property.

Note moreover that thereis no compulsionto usetheew_set _f ont method, in order to change the font
used by an editor. Rather, the code given above can be used as atemplate (in conjunction with more code
to be listed shortly) for application-specific code to achieve a similar result.

Note finally that editors withlocal variationsin font - ie with some portions of text being displayed in one
style, and with other portions being displayed in another style - require alternative document objects to be
used - asisdiscussed later in this chapter.

The ew_sense_size and ew_set_size methods

Code that can be used to resize an editor - for example in response to the status window changing, or in
responseto a‘Zoom’ menu command - includestheew _sense_si ze andew_set _si ze methods. These
are normally used as apair, for obvious reasons:

METHOD VOI D edwi n_ew _sense_si ze(PR_EDW N *sel f, P_EXTENT *pext)

{
SCRI MG_W N wi n;

p_send3(sel f->edw n.scring, O_SI _SENSE, &wi n) ;
pext->tl=win.tl;

pext - >wi dt h=wi n. wi dt h;

pext - >hei ght =wi n. nl i nes;

}

METHOD VOI D edwi n_ew _set _size(PR_EDW N *sel f, P_EXTENT *pext, VO D *hand, | NT
met hod)

{
SCRI MG W N wi n;
I NT twid;

p_send3(sel f->edwi n.scring, O_SI _SENSE, &wi n) ;
sel f->l odger. of fset=wi n.t| =pext->tl;
sel f- >l odger. wi dt h=wi n. wi dt h=pext - >wi dt h;
wi n. nli nes=pext->hei ght;
twi d=p_send4(sel f->edwi n.scring, O SI _SET, & n, NULL) ;
i f (hand)
p_send3(hand, met hod, t wi d) ;
p_send3(sel f->edw n.scring, O SI _STYLE_CHANGED, SCRI MG_STCHNG_DCC) ;

}

Notethat the hei ght field inthe P_EXTENT data accessed by both these methods refers to the number of
linesin the screen window - in contrast to the values in each of the other threefieldsin the P_EXTENT data,
which all represent numbers of pixels. Evidently, SCRI MG always assumes that there are a whole number of
linesvisible.

Next, note that thesi _set method returns the number of pixelsin the width of the text area of the editor,
after theresize. Thisvalue may or may not be useful - see below for its use withinthewn_i ni t method of
EDW N itself.

Finally, notethat theew_set _si ze method supports apossible “soft” call-back - if the parameter hand is
non-NULL - before making thesi _styl e_changed request to SCRI MG to trigger alayout recalculation.

12-23

OBJECT ORIENTED PROGRAMMING GUIDE

Changing the paragraph margins

Thefollowing example could be used to set the “right” margin to the arbitrary large value of 4096 - and
thereby to disable word-wrap, in effect (asin the Program Editor).

Alternatively, the example could be extended to adjust the other paragraph margins used by paragraphs- ie
the “left” and “first line” margins:

LOCAL_C VOI D Set Ri ght Margi n(PR_EDW N *edwi n, U NT ri ght)
{

edwi n->edwi n. mar gi ns. ri ght =ri ght;
p_send3(edw n->edwi n. scring, O_SI _STYLE_CHANGED, SCRI MG_STCHNG_DOC) ;
}

Notifying SCRIMG of a change in style

Thesi _styl e_changed method causes SCRI MG to recal culate some or all of the layout in the associated
SCRLAY object, and to redraw the screen (intelligently - ie minimising the amount of redrawing that actually
isdone). The cursor position and any select region are maintained, and as far as possible, the cursor is
drawn on the same line number of the screen (eg the second line down from the top of the visible portion) as
before.

Exactly how much work is carried out depends on the SCRI MG_STCHNG_XXX parameter passed (but note
that this parameter isignored on the Series 3, with notice of it being taken only on the Series 3a and on the
MC):

if the parameter iSSCRI MG_STCHNG_DOC, the entire layout is rebuilt and redrawn (subject, as
always, to only building as much layout asis required to cover the visible portion of the document)

if the parameter iSSCRI MG_STCHNG_PARA, layout above the top of the paragraph containing the
cursor (or the top of any selected region) isnot recalculated or redrawn, and any layout below the
bottom of the paragraph containing the cursor (or the foot of any selected region) is merely
scrolled vertically (if required) - thisisthe action appropriate when, for example, paragraph styling
isapplied in the word processor by akey sequence such asCONTROL-BT

if the parameter iSSCRI MG_STCHNG LI NE, asimilar optimisation is made, appropriate thistime to
the application of phrase style (sometimes called “emphasis”) in the Word Processor - this can
result in even lesswork being carried out, if for example the cursor isin the third or subsequent line

in a paragraph.

Initialising the SCRIMG_WIN data structure

For general background interest, hereisan extract from edwi n_wn_i ni t , containing the code that creates
and initialises the SCRI MG subcomponent:

12-24

12 EDIT WINDOWS

METHOD VOI D edwi n_wn_i ni t (PR_EDW N *sel f, IN_EDW N *init, PR_.WN
*whand, | N_EDW N_X *initx)

{

SCRI MG_W N wi n;
SCRLAY_DOC doc;
SCRLAY_STYLE styl e;
G_FONT_I NFO fi nfo;
EDW N_LEADI NG | eadi ng;

sel f- >l odger. | andl or d=whand;

wi n. | cfont=0; /* no left cursor by default */
if (init->flags& N_EDW N_LEFT_CURSOR)

wi n. | cfont =WS_FONT_BASE;

wi n.lcstyle=sel f->edwi n.font.styl e&G _STY_DOUBLE;

wi n. | ccode=WS_SYMBOL_MARGI N_CURSOR;

}
| eading.total =2; /* by default, one pixel |leading at top and at bottom */
| eadi ng. t op=1;
if (init->flags& N_EDW N_LEADI NG_SUPPLI ED)

| eadi ng=i ni t x- >l eadi ng;

wi n. | hei ght =fi nfo. hei ght +I eadi ng. t ot al ;
wi n. |l ascent =fi nfo. ascent +| eadi ng. t op;
wi n. wi d=whand->wi n.i d;
win.tl=initx->pos; /* may be garbage but no harm done */
wi n.nlines=(init->flags& N_EDW N_VI SLI NES_SUPPLI ED? i ni t x->vi slines: 1);
wi n. wi dt h=sel f->| odger. wi dt h;
wi n. mar gi n=0;
wi n. cwi dt h=2;
if (win.nlines==1)
{

wi n. hscrl x=0;

wi n. hscrl nFwi n. wi dt h>>2;

}
el se

wi n. hscrl x=wi n. hscr| m=30;
sel f->edwi n. scri ng=h_f new(C_SCRI MG) ;
sel f->edwi n. margi ns. ri ght =p_send4(sel f->edwi n. scrinmg, O_SI _SET,

&wi n, sel f->edwi n. scrlay)-finfo.mx_wi dth;

if (win.nlines==1)

sel f->edwi n. mar gi ns. ri ght =4096; /* any large value will do */
if (init->flags& N_EDW N_POSI TI ON_SUPPLI ED)
{ /* else defer until following | g_set_id_pos */

sel f->l odger. of fset=win.tl;

sel f->win.id=win.wd;

p_send4(sel f->edwin.scrinmg, O SI _INT,O0,O0);
Sel ect Al l Or Cur End(sel f);

}

Direct interaction with document objects

A given EDW N object interacts with up to two document objects: the document object where its own
character content is stored, and (optionally) the clipboard document object.

The clipboard document object is usually an instance of either EPFLAT or EPSEG. Seethe OLIB Reference
manual for a description of these two classes- which are each a subclass of EPROOT.

The main document object for an EDW N has to be a subclass of the FORM EPDOC class. Thisisa
specialised subclass of EPROOT, and like EPROOT, it supports both “flat” and “ segmented” concrete
subclasses, namely EPFLAT and EPSEG. Methods of EPROOT all carry over to EPDOC - although the
implementation may differ, in places.

Although many of the methods of EDW N manipulate the document objects on behalf of the application,
there can be occasions where it is more appropriate for the application to interact directly with these
objects. Afterwards, of course, the editor has to be informed that a change has taken place.

12-25

OBJECT ORIENTED PROGRAMMING GUIDE

Another reason for wishing to understand document objects more deeply isin order to support local
variationsin style data. Y et another isin order to supply “labels’ for paragraphs. All thesetopicsare
discussed in the following subsections of this chapter.

Setting text directly into the document object

Suppose for exampl e that an application wishesto set alarge amount of text into an edit window - text that
can beread in stages from afile. The following steps could be taken.

First, the handle of the document object needs to be obtained. This can be read out of the edwi n. doc
property field of the EDW N, or the document object may have been created separately - in which case the
handle will already be known.

Next, it may be appropriate (especially in the case of aflat document object) to set the capacity of the
document object in advance - if the overall sizeisknown. Theep_capaci t y method (refer to the OLIB
Reference manual for details) can be used to thisend. (Theep_capaci ty method isleft asp_dumy for al
segmented document objects.)

Following that, repeated calls of the following sort can be made:
p_send5(doc, O EP_I NSERT, pos, buf,len);

having the effect, each time, of inserting thel en characters at * buf into the document, at document offset
pos. It would be usual to track the value of pos as this operation proceeds, withl en being added to it each
timel en more characters are inserted.

Finally, code of the following sort is required:
LOCAL_C VOI D Noti f yDocChanged(PR_EDW N *edwi n)
Ul NT docl en;

docl en=p_send2(edw n- >edwi n. doc, O EP_SENSE_LEN) ;

edwi n->edwi n. cl en=docl en+1;

p_send3(edw n->edw n. scri ng, O_SI _DOC_CHANGED, docl en) ;
}

It isthislast routine that stands most in need of comment here (the earlier steps, after all, only require
knowledge of the EPROOT class). In general

SCRI MG level data hasto be adjusted - by means of, for example, thesi _doc_changed method

and, at the sametime, EDW N level data has to be adjusted - usually by direct manipulation of the
relevant property fields.

There are actually two key EDW N property fieldsin this context:

edwi n. cl en, giving the total “character length” of the document (including the final paragraph
delimiter)

edwi n. cpos, giving the cursor position, as a document offset.

For simplicity, the above routine, Not i f yDocChanged, omits making any change in the cursor position -
which may be appropriate in some cases, but it will not be appropriate in other cases, and will evenresultin
program crashesin yet other cases (eg if there are fewer charactersin the document after the change than
before the change).

Dual variables at the EDWIN and SCRIMG levels

As can be seen, copies of, effectively, the total character length of the document are held by both SCRI MG
and EDW N. Likewise, dual copies are also kept of the cursor position. Thereisalsoasel ect field within
EDW N property (which iSTRUE if thereisanon-NULL select region, otherwise FALSE), which must, once
again, be kept in synchronisation with the status of the select region as known to SCRI MG.

The reason for this duplication of data storageisto increase the speed at which various critical manoeuvres
within edit boxes can be executed. However, it should be pointed out that failure to keep these dual
variables appropriately in harmony is a common cause of bugs in programming edit windows.

12-26

12 EDIT WINDOWS

Adjusting the cursor position

Oneway that the cursor position of an edit window (and, with it, the select region) can be adjusted isviathe
ew_set method documented earlier in this chapter.

For many purposes, however, the SCRI MG method si _nove_cur sor may prove more suitable. Infact,
si _move_cursor isused frequently within EDW N code (for example, withintheew_set method), oftenvia
the following utility routine:

LOCAL_C VO D MoveCursor (PR_EDW N *sel f, I NT shift,|NT type)
{
sel f->edwi n. sel ect =p_send5(sel f->edwi n. scri ng, O_SI _MOVE_CURSOR,
shift,type, &el f->edw n. cpos);
}
Subclasses of EDW N often contain aduplicate of this utility function- suchisits use.
The meaning of theshi ft parameter tosi _nove_cursor isasfollows:

if theshi ft parameter isnon-zero, it meansto extend (or create) a select region, with the movement
specified by t ype being applied to the moving end of the selection

if shift iszero, it meansto cancel any exi sting select region, and to move the cursor as specified by
type.

Thereturnvaluefrom si _nmove_cur sor iSTRUE if thereisanon-NULL select region after the movement,
and otherwise FALSE.

The possible meanings of t ype are asfollows:

SCRI MG_LI NEDN move the cursor down oneline

SCRI MG_LI NEUP move the cursor up oneline

SCRI MG_PAGEDN move the cursor down one page

SCRI MG_PAGEUP move the cursor up one page

SCRI MG_LI NBEG move the cursor to the beginning of the current line

SCRI MG_LI NEND move the cursor to the end of the current line

SCRI MG_SETPOS move the cursor to the document offset specified by thefinal parameter.

In all cases, the final position of the cursor, as a document offset, iswritten to the address specified by the
final parameter to thesi _nove_cursor call.

Logical cursor movement and physical cursor movement

Most of thet ype valuesin the above table cater for so-called “physical” cursor movement - where the
actual movement of the cursor is determined by reference to the current layout. (In order to work out where
to position the cursor, SCRI MG interrogates the data structures maintained by the associated SCRLAY
object.)

In many other cases- for example, in response to the CONTROL-LEFT key, which moves the cursor back to
the next beginning of aword - the movement of the cursor isinstead determined by reference to document
content, and resultsin aso-called “logical” cursor movement. Methods of EPROOT, such as
ep_scan_wor d, may be of usein thiscase. Once the required document offset isknown, acall to

si _nmove_cursor isreguired, specifying SCRI MG_SETPOS asthet ype. For thisreason, subclasses of
EDW N often contain aroutine such as

LOCAL_C VO D Set Cursor (PR_EDW N *sel f)

{
MoveCur sor (sel f, 0, SCRI MG_SETPOS) ;

}

which, evidently, layers over the MoveCur sor utility routine described earlier.

On this subject, yet another routine that may be worth duplicating is the following, whose effect is to set up
aselect region with given ends (thisroutineis called, in effect, frominsideedwi n_ew_set):

12-27

OBJECT ORIENTED PROGRAMMING GUIDE

LOCAL_C VOI D Set Edwi nSel ect (PR_EDW N *sel f, Ul NT ancpos, | NT sell en)

sel f - >edwi n. cpos=ancpos;
MoveCur sor (sel f, 0, SCRI MG_SETPOS) ;
sel f->edwi n. cpos+=sel | en;
MoveCur sor (sel f, TRUE, SCRI MG_SETPOS) ;
}
Notifying SCRIMG of a change in document content

The SCRI MG class supportsin all four different methods for reporting to it that there has been achangein
the document. These methods differ primarily in how much reformatting is required - to avoid incurring
unnecessary work re-eval uating layout data that cannot possibly have changed. (That isavery important
consideration when the user istyping in the middle of a sizeable paragraph.)

Thesi _doc_r eset method can be called asfollows:
p_send5(scring, O_SI _DOC_RESET, docl en, cpos, | i ne);
with the following effect:
SCRI MGis notified that the docunment has totally changed, and now has document lengthdocl en
any existing select region should be discarded
the existing layout data should be discarded

the layout should be rebuilt so that the curspor is put at document offset pos and is displayed at
line number I i ne on the visible screen (subject to that line being reachable).

Notethat| i ne can be set to thevalue - 1 in order to pick up the current line number (so that the cursor
remains, if possible, on the same line of the screen as before).

Note again that the docl en value includes the final terminating paragraph delimiter in the document.

A simple example of theuse of si _doc_r eset isinthefollowing utility routine called inside
edwi n_wn_set :

LOCAL_C VO D Edwi nSet (PR_EDW N *sel f, SE_EDW N *set)

{

p_send4(sel f->edwi n.doc, O EP_SET_TEXT, set - >buf, set->l en);

sel f - >edwi n. cpos=0;

sel f->edwi n. cl en=set - >l en+1;

p_send5(sel f->edwi n.scrinmg, O SI_DOC_RESET, sel f->edwi n. cl en, 0, 0);
}

(the codeinedwi n_wn_set goeson to set the cursor position and select region depending on the value of
theinitialisation1 N_EDW N_XXxX flags).

Similar in effect tosi _doc_reset, thesi _doc_changed method differson in that the cursor positionis
maintained the same as before the change was made. Accordingly, whilst adocl en parameter is still
needed, this method hasnocpos or | i ne parameters. Theway tocall si _doc_changed ingeneral is

p_send3(scring, O_SI _DOC _CHANGED, docl en) ;

For example, edwi n_ew_r epl ace callssi _doc_changed, indirectly, asfollows (this code also illustrates
use of the SCRI MG methodsi _sense_sel ect):

LOCAL_C VO D Edwi nDocChanged(PR_EDW N *sel f)

{
sel f - >edwi n. change=EW _CHANGE;
p_send3(sel f->edwi n.scrinmg, O SI _DOC_CHANGED, sel f->edwi n. cl en);

}

12-28

12 EDIT WINDOWS

METHOD | NT edwi n_ew_repl ace(PR_EDW N *sel f, TEXT *repl ace, | NT backwar ds)

{
UWORD r epl en;

UWORD sel | en;
UWORD pos;
INT err;

CheckNot ReadOnl y(sel f);

repl en=p_sl en(repl ace);

sel | en=p_send3(sel f->edwi n.scring, O SI _GET_SELECT, &pos);

if ((err=p_entersend5(sel f->edw n.doc, O EP_I NSERT, pos, repl ace, repl en)) ! =0)
p_send3(sel f, O EW LEAVE, err);

sel f - >edwi n. cpos=pos+repl en;

i f (backwards)
sel f - >edwi n. cpos=pos;

Set Cur sor (sel f);

p_send4(sel f->edw n. doc, O EP_DELETE, pos+r epl en, pos+r epl en+sel | en) ;

sel f->edwi n. cl en+t=(repl en-sellen);

Edwi nDocChanged(sel f);

return(0); /* confirm success */

}

Notifying SCRIMG of a local change in document content
Thesi _fwd_change method of SCRI MGis called asfollows:

p_send3(scring, O SI _FWD_CHANGE, docl en);

This takes exactly the same parameters assi _doc_changed, and asin that case, the method has the effect
of

cancelling any select region
keeping the cursor at the same document offset as before.

However, for si _f wd_change, SCRI MG makes the assumption that the layout cannot change in paragraphs
earlier in the document than that containing the cursor; nor can it change in linesin the current paragraph
more than one above that containing the cursor. Briefly (though, as can be appreciated, not completely
accurately), only layout forward from the cursor can have changed.

For example, edwi n_ew_paste_cl i p calssi _fwd_changed, indirectly, asfollows:
LOCAL_C VO D Edwi nFwdChange(PR_EDW N *sel f)

{

sel f - >edwi n. change=EW_CHANGE;

p_send3(sel f->edwi n.scring, O_SI _FW_CHANGE, sel f->edwi n. cl en);
}

METHOD | NT edwi n_ew_paste_cli p(PR_EDW N *sel f)

{
UWORD | en;

INT err;

CheckNot ReadOnl y(sel f);
| en=p_send2(sel f->edwi n.clip, O EP_SENSE_LEN);
if (len)

if ((err=p_entersend4(self->edw n.doc, O_EP_PASTE,
&sel f - >edwi n. cpos, sel f->edwi n. clip))!=0)
p_send3(sel f, O EW LEAVE, err);
sel f->edwi n. cl en+=l en;
Edwi nFwdChange(sel f);
Set Edwi nSel ect (sel f, sel f->edwi n. cpos-1en,|en);

return(len);

}

Thesi _par a_changed method takes stages one step further by restricting the extent of possible layout
changeto the current paragraph (whereas a change notified by si _f wd_change can effect regions on the
screen arbitrarily far below the current paragraph). More precisely, si _par a_changed assumes that the
only possible change in layout for paragraphs below the current paragraph is vertical scrolling.

12-29

OBJECT ORIENTED PROGRAMMING GUIDE

Another change betweensi _fwd_change andsi _par a_changed isin the form of the parameters passed.
In general, acall tosi _para_changed hastheform

SCRLAY_PLX ol d;
p_send4(scring, O_SI _PARA_CHANGCED, keycode, &ol d) ;

The precise description of the method is that the paragraph containing the cursor has changed at the cursor
position as aresult of one of:

asingle character insertion of acontent character, where keycode is either acharacter code (which
isassumed to be printable) or zero (paragraphend) or* \ t* (W KEY_TAB) or ' \ n'

aleft delete, where the character codeis' \ b' (W KEY_DELETE_LEFT)
aright delete, where the character is127 (W KEY_DELETE_RI GHT).

The method immediately redraws the current line to reflect the input, and compl etes the production and the
drawing of the layout as a background task. Thefinal parameter, which isapointer to a SCRLAY_PLX struct,
has significance only whenkeycode iSW KEY_DELETE_LEFT. Thisisrequiredin order for SCRI MG code to
be able to make a saf e judgement about whether the deletion has effects that extend over more than oneline
(the problem being that SCRI MG cannot in this calculate the old cursor position after being notified of the
changein the document).

An example of code that sets up the appropriate SCRLAY_PLX structure, prior to callingsi _par a_changed,
isinthefollowing extract from edwi n_wn_key, for the case when aw KEY_DELETE_LEFT key has been
received:

case W KEY_DELETE_LEFT:
CheckNot ReadOnl y(sel f);
if (self->edw n.select)
goto del sel;
if (self->edw n.cpos==0)
br eak;
p_send3(sel f->edwi n. scrinmg, O _SI _DELPREP, &pl x) ;
sel f - >edwi n. cpos- =1;
p_send4(sel f->edw n. doc, O EP_DELETE, sel f->edwi n. cpos, sel f->edwi n. cpos+1);
sel f->edwi n. cl en-=1;
p_send4(sel f->edw n. scring, O_SI _PARA CHANGED, keycode, &pl x) ;

As can be seen, thereisno need to passadoc! en parameter tosi _par a_changed.

When there is a change of content and a change in cursor position

The above few sections have touched (and hinted) at one potential problem when orchestrating notification
to SCRI MG that the document has altered, whilst at the same time trying to take advantage of incremental
updatesin the layout information (for speed purposes).

The problem is that SCRI MG cannot be left with a cursor position that no longer exists in the document.
More precisely, recall that SCRLAY ultimately views the document as consisting of a series of so-called
tboxes. For example, agiven tbox may refer ton characters starting at document offsetdof f . As mentioned
earlier, these n characterswill all be stored contiguously within a buffer inside the associated document
object. But suppose, asaresult of achange in the document, these characters are no longer stored
contiguously. Then any subsequent attempt to access these characters- by reference - will fail. But thisis
precisely the kind of thing that SCRI MG and SCRLAY will, between them, attempt to do - so long as they
believe that part of the layout structureis still valid.

Without going into any more details, the moral is clear: position the SCRI MG cursor to the beginning of any
region where change is about to occur, before making that actual change. Various aspects of the EDW N
code given above can be seen, upon inspection, to be obeying this principle.

The SCRLAY_DOC data structure

Thesl _i ni t method, described earlier, actually requires the address of a SCRLAY_DOC data structure, as
well asthe address of a SCRLAY_STYLE data structure. The SCRLAY_DOC structure informs SCRLAY about
some very important aspects of the associated document object:

12-30

12 EDIT WINDOWS

typedef struct

UWORD | en; Length of doc (one greater than max position)
VOl D *content; Obj ect contai ni ng docunent content

WORD sensechars; Met hod to sense character segnments

WORD sensepdat a; Met hod to sense paragraph | ayout data

WORD sensepl abel ; Met hod to sense paragraph | abel

WORD t opar st ; Met hod to scan start of paragraph

WORD enqpage; Met hod to enquire for a page break

} SCRLAY_DCC;
Hereis how these values arefilled in duringedwi n_wn_ini t:
SCRLAY_DOC doc;

doc. enqpage=0;
if (init->flags& N_EDW N_TEXT_SEGVENTED)

doc. sensechar s=O_EPDOC_SENSE_CHARS;

doc. t opar st =O_EPDOC_PARA_START,;

if (init->flags& N _EDW N_PAGI NATABLE)
doc. enqpage=0_EPDOC_ENQ_PAGE;

}

el se

{
doc. sensechar s=O_EPFDOC_SENSE_CHARS;

doc. t opar st =O_EPFDOC_PARA_START;

}

if (init->flags& N_EDW N _DOC_SUPPLI| ED)
sel f - >edwi n. doc=i ni t x- >doc;

el se

{

sel f - >edwi n. doc=NewEdwi nDoc(CAT_HW M_FORM C_EPFDCC, i nit);

p_send4(sel f->edwi n.doc, O EP_SET_TEXT, & nit->contents[0], p_slen(& nit-
>contents[0]));

doc. sensepdat a=0;

doc. sensepl abel =0;

doc. cont ent =sel f - >edwi n. doc;

doc. | en=sel f - >edwi n. cl en=p_send2(sel f->edwi n. doc, O EP_SENSE_LEN) +1;

Subclasses of EDW N (or other window objects providing edit-like windows) may wish to alter some of the
values of these fields, to achieve affects such as paragraphs with associated labels.

The five soft method numbers in SCRLAY_DOC

It istimeto point out one key design decision embodied in the relationship between SCRI MG, SCRLAY, and
EPDOC. Infact, SCRLAY only ever communicates with the document object viathe five soft methods (also
known as “call-backs”) whose numbers are contained within the SCRLAY_DOC data structure. And SCRI MG
never communicates directly with the document object. (For example, when SCRI MG needs to display text on
the screen - eg in response to aredraw request - it readsthe charactersit hasto draw, by sending the
associated SCRLAY object ans!| _r ead message.)

Thisalowsfor diverse powerful objectsto be built up, using SCRLAY and SCRI MG as components. |n some
cases, the associated document object will continue to be a subclass of EPDOC - as is always the case when
EDW Nisinvolved. But thereisno fundamental requirement for thisto be the case. Instead, the only
requirement is to provide methods for some of the slotsin SCRLAY_DOC.

The SENSECHARS call-back
The protocol of thesensechar s call-back can be seen from the following excerpt from SCRLAY code:

GLDEF_C VO D SenseChar s(SCRLAY_SENSECHARS *ps, SCRLAY_FONT **pf, UBYTE **pfw)

p_send5(Dat Scrl ay->scrl ay. doc. cont ent, Dat Scr | ay-
>scrl ay. doc. sensechars, ps, pf, pfw);

}
This uses the SCRLAY_SENSECHARS struct which is defined as follows:

12-31

OBJECT ORIENTED PROGRAMMING GUIDE

typedef struct

{

UWORD pos; docunent position to sense

WORD printer; TRUE for printer data el se screen data
TEXT *buf; address of character bl ock

WORD bl en; I ength of character block

} SCRLAY_SENSECHARS;

One concreterealisation of thesensechar s cal-back isprovided by theepdoc_sense_char s method of
the EPDOC class:

METHOD VO D epdoc_epdoc_sense_chars(PR_EPDOC *sel f, SCRLAY_SENSECHARS *sense)

{
sense->bl en=p_send5(sel f, O EP_SENSE_CHARS,

&sense- >buf, sense- >pos, W5_MAX_PRI NT_BOX_TEXT_LEN) ;
}

It will beimmediately apparent that thisrealisation of sensechar s hasignored the final two parameters, pf
and pf w. That isentirely deliberate. Thereason for thisisthat, prior to SCRLAY sending thesensechar s
message, it pre-loads the pf and pf w variables to point to the corresponding global stylefields, inside the
SCRLAY_STYLE datastructure. Accordingly, for editorsin which thereisnolocal variation in style, thereis
no need for thesensechar s cal-back to write to the passed pf and pf wvariables.

For interest, hereisan extract from thesensechar s cal-back provided by the Word Processor document
class (known simply asdoc):

METHOD | NT doc_epdoc_sense_char s(PR_DOC *sel f, SCRLAY_SENSECHARS *pss,
SCRLAY_FONT **pf, UBYTE **pfw)

{

TAGLI ST_I TEM *pi ;
LOG_POSI TI ON *pl og;
Ul NT | en;

UBYTE *pw,

pi =doc_dc_sense_position(sel f, pss->pos);
pl og=(&sel f->doc.t->taglist.|pos);
if (pf) /* if pss->printer is TRUE, get printer data */
{
if (pss->printer)
{
SensePr nFont (pi - >par, pi - >phr, &sel f - >doc. pf);
*pf =&sel f - >doc. pf;
}

el se

{
pw=SenseScr Font (sel f, pi - >par, pi - >phr, &sel f - >doc. sf);
*pf =&sel f - >doc. sf;

}
}
if (pfw) /* if pss->printer is TRUE, get printer data */

if (pss->printer)

*pf w=SensePr nW dt hTabl e(sel f, pi - >par, pi - >phr);
el se

*pf w=pw;

| en=pi - >li nk- pl og- >of f set;
pss->bl en=p_send5(sel f, O_ EP_SENSE_CHARS, &pss- >buf, pss->pos, | en);
return(pss->bl en==len);

}

Without going into details, some points can be noted:

the significance of thepri nt er fieldinthe SCRLAY_SENSECHARS struct isthat, if it iSTRUE, printer
font width tables and printer font details should be provided - otherwise datafor screen display

atest should be made onpf and pf w, in case they are NULL, which means that no data should be
written to them in that case.

12-32

12 EDIT WINDOWS

Structure of SCRLAY font width tables

Reference has been made above to font width tables. As can be seen, the default value of the font width
table pointer f wt ab - asset upinedw n_wn_i ni t -isactually NULL. Thisclarifiesthat an explicit font
width tableis not always required. Inthiscase, widths of pieces of text are calculated by calling the
Window Server function gText W dt h. But for some purposes, having afont width table on the client side
significantly increases the speed at which formatting can take place. Furthermore, for printing purposes,
having font width tables loaded isessential. See the Printing chapter in this manual for more information
about font width tables.

The TOPARST call-back

The protocol of thet opar st call-back can be seen from the following excerpt from SCRLAY code:

LOCAL_C VOI D ToPar Start (UAORD *pos)

p_send3(Dat Scrl ay->scrl ay. doc. content, Dat Scrl ay->scrl ay. doc. t opar st, pos);

}

In contrast to the sensechar s call-back, thisisacompletely straightforward routine, with only one
parameter, which is a pointer to adocument offset that needs to be converted to that for the start of the
paragraph containing it.

The implementation of t opar st by EPDOC isas follows:

METHOD VOI D epdoc_epdoc_para_start (PR_EPDOC *sel f, UNMORD *ppos)

/~k
Convert *ppos to point to the beginning of the paragraph containing *ppos
*/
{
p_send4(sel f, O_EP_SCAN_PARA, ppos, EP_SCAN_BACKWARDS| EP_SCAN_STAY| EP_SCAN_TO_BEG
I'N);
}

The ENQPAGE call-back

Theenqgpage call-back, if non-zero, is used by SCRLAY to determine whether a page-break isto occur at a
givenlineinaparagraph. Thisfactisindicated by setting the new_page field TRUE, in the corresponding
SCRLAY_LI NE data structure (see earlier in this chapter for the definition of this structure).

By default, this call-back is left as zero, in edit windows, but EDW N sets it toepdoc_enq_page if the
initialisation flag! N_EDW N_PAGI NATABLE is Set.

A full discussion of the operation of epdoc_enqg_page requires detailed knowledge of the EPDOC class.

The SENSEPDATA call-back

Thesensepdat a call-back playsarole analogoustosensechar s call-back: it catersfor local variationsin
paragraph styling (whereassensechar s catersfor local variations in phrase emphasis).

The protocol for thesensepdat a call-back can be seen from the following extract from SCRLAY code:

if (DatScrlay->scrlay.doc. sensepdat a)
p_send5(Dat Scrl ay->scrl ay. doc. content, Dat Scrl ay- >scrl ay. doc. sensepdat a,
posl, Dat Scrl ay->scrlay.st.printer, &at Scrl ay-
>scrlay. st. pd);

In other words, if the call-back is non-zero, the document object has to provide the SCRLAY_PDATA data for
the paragraph containing the document offset pos 1 (and paying due respect to whether the pri nt er
parameter iSTRUE or FALSE).

For interest, here is how the Word Processor doc class providesthe sensepdat a call-back:

12-33

OBJECT ORIENTED PROGRAMMING GUIDE

METHOD VO D doc_dc_sense_pdat a(PR_DOC *sel f, U NT pos, | NT printer, SCRLAY_PDATA
*pd)
/*
Sense the margin, tab and spacing data for the current paragraph.
If printer is TRUE, return printer val ues.
*/
{

PAR_STYLE *par;

par =doc_dc_sense_position(self, pos)->par;
if (!printer)

SenseScr Tabs(sel f, par, &el f->doc. t abs);
pd- >mar gi ns=&par - >scr_mar;

}

el se

{

SensePrnTabs(sel f, par, &el f->doc. t abs);
pd- >mar gi ns=&par - >pr n_mar ;
pd- >spaci ng=&par - >prn_spc;

pd- >t abs=&sel f - >doc. t abs;

}

The SENSEPLABEL call-back

If non-zero, thesensepl abel cal-back isassumed to provide information about labels to be drawn
alongside the starts of paragraphs, in aleft margin area. Two examples of paragraph labels are

field names in the Database application
style short-codes in the Word Processor application.
The protocol of the call-back can be seen from the Word Processor implementation of the method:

METHOD VOI D doc_dc_sense_pl abel (PR_DOC *sel f, Ul NT cpos, | NT
printer, SCRLAY_PLABEL **ppl)

{

PAR_STYLE *par;

XWP_LAY *pxl ay;

pxl ay=SenselLay(sel f);

*ppl =&px| ay- >l abel ;

par =doc_dc_sense_posi tion(sel f, cpos)->par;
pxl ay- >l abel . buf =&par - >ph. sc[0] ;

pxl ay- >l abel . bl en=2;

}

Aswith many of these call-backs, two of the parameters passed are
the document offset, cpos, of the position of interest

aflag, pri nt er, specifying whether the information is required for screen-display purposes or for
printing purposes.

Thefinal parameter involvesthe SCRLAY_PLABEL struct, whose definitionis asfollows:

typedef struct

SCRLAY_FONT font; font 1D, height (printer only) and style
UWORD al i gn; al i gnnment

TEXT *buf; address of character bl ock

WORD bl en; I ength of character block

} SCRLAY_PLABEL;

Some examples of edit-like windows

Admittedly, there is aformidable learning curve to gaining full familiarity with the scope and power of the
SCRLAY and SCRI MG classes. In particular, despiteits length, this chapter has only touched peripherally on

12-34

12 EDIT WINDOWS

such topics as page breaks and special support for printing (ie using approachesother than the LPRI NTER
and XPRI NTER classes).

However, it turns out in practice that many displays can be programmed more quickly and more efficiently
using SCRI MG and SCRLAY, than using any alternative mechanisms. Furthermore, in many cases only a
small amount of the rather detailed full interface to SCRI MG and SCRLAY needs to be appreciated.

One exampleisthe " Synonyms” screen in the Spellchecker application. This consists of alist of words
which can be navigated by standard keypresses. Thusif theword “Bang” islooked up, the screen can look
like:

ban

noun striEE, hit, bell ringer, bull's-eye, gong, slam, smash;
crash, boom, clang, clap, resound, roar, rumble, shake, !
thunder; i .
TaunEn blast, blare, boom, discharge, noise, pop, report,

roar;
hit, knock, blow, box, bump, chop, clap, conk, crack, crash,
cuff, impact, jar, jolt, lick, punch, rap, slap, siug, smack,
smash, swal, swipe, tap, wallop, whack,.

verb crack, pop, snap, thump;
dent, ﬁullul.-.l, dimple, indent; f

="

In this example, ROM code handles:
automatically wrapping the lists of words at the edge of the window
automatically smoothly scrolling the display vertically when needed
navigating by word - using the ep_scan_wor d method

displaying the relevant “labels’ at the side of each group of words (in this example, “noun” and
“verb”).

ROM code even supports the notion of a*“hard space”, eg between “bell” and “ringer” on the second linein
the above screen, to prevent paired groups of words being split over aline.

Another example worth mentioning is the main display window of the “Berlitz” five-language translator
application;

"Ena pitch-dark {adi: ,%%
Fre h?-:-ljirj}n:-:-mme dans un four
ad.] EBerlit
Ger stockdunkel {adir =rbE
Spa oscuro como boca de lobo 1?:4@
Tad jr
[Eng: pitch] 2-8| Thu 18

General comments on creating edit-like windows

In all examples likethis, asignificant proportion of thework isin theinitialisation. The variousinitialisation
structs - which are quite long - have to befilled in appropriately, and in the correct order. But oncethe
system of objectsisin place, it largely runsitself.

The main extraresponsibility of the programmer is to pass messages onto the SCRI MG object (and, less
frequently, to the SCRLAY object) at appropriate times. Many of these messages have already been
discussed in the course of this chapter, but afew remain to be covered.

The si_redraw method

The entire contents of the wn_dr aw method of EDW N is to pass on a corresponding message to SCRI MG.

12-35

OBJECT ORIENTED PROGRAMMING GUIDE

METHOD VO D edwi n_wn_draw(PR_EDW N *sel f)

{
p_send3(sel f->edwi n.scring, O SI _REDRAW NULL) ;
}

Thefinal NULL parameter means to redraw the entirety of the region.

On the SERIES 3a, the final parameter can meaningfully be other thanNULL (in fact, on the Series 3, the final
parameter isignored), in which case it should point to aP_RECT structure indicating the portion of the
region that needs to be redrawn.

The si_emphasize method

The entire contents of thewn_enphasi se method of EDW N s, again, to pass on a corresponding message
to SCRI MG;

METHOD VO D edwi n_wn_enphasi se(PR_EDW N *sel f, | NT fl ag)

{
p_send3(sel f->edwi n.scring, O SI _EMPHASI ZE, f | ag) ;
}

Any application that makes direct use of SCRI MG (ie without the benefit of an intermediate EDW N object)
would have to possess a corresponding message.

The si_pan method

Thesi _pan method provides a means for awindow display to be scrolled horizontally, even though itis
not displaying any visible cursor.

An example of this behaviour iswhen the user pressesRIGHT or LEFT when viewing the “Found” screenin
the “Wrap off” state of the Database application.

Code calling thesi _pan method will look like
p_send4(scring, O SI _PAN, func, par);
Thesi _pan method actually combines three different functions, depending on the value of f unc:

if f unc iISSCRI MG_PAN_SETNOPAN, the nopan property value of SCRI MGis set topar (which
should be either TRUE or FALSE)

if f unc iISSCRI MG_PAN_DELTA, the effect isto scroll the display horizontally by par pixels (where
par can be either positive or negative)

if f unc iISSCRI MG_PAN_ABS, the effect isthe scroll such that par isat the left of the view.

Any scrolling is contrained to reasonable limits. For example, the display will not scroll past the right hand
end of the longest visibleline.

The purpose of the nopan mode isto control whether, any timethe view is scrolled vertically, it also tries to
scroll horizontally (ieto “pan™) in order to keep the cursor position visible.

12-36

CHAPTER 13

PRINTING

This chapter describes the basics of access to the WDR print system from HWIM applications.

See the chapter WDR Printing in the Additional System Information manual for background information
about the scope of the SIBO WDR print system.

Although partial accessto the WDR print system is available to Hwif programmers, full accessisonly
possible via object oriented techniques, such as are explained in this chapter.

Asfar asHWIM applications that wish to print are concerned, three different levels of approach can be
identified, in increasing order of sophistication (and difficulty):

1. applications create and use a subclass of the HWIM LPRI NTER class, and REPLACE only the one
method | pr _sense_t ext

2. applications create and use a subclass of LPRI NTER, and REPLACE other methods, such as
| pr_read

3. applications avoid using LPRI NTER, and instead interface more directly with classes such as
PAGES in the FORM library (the interaction with PAGES is one of the things that LPRI NTER handles
automatically, for |ess demanding applications).

For many applications, the first of these three levelsis perfectly sufficient, and in this case, only alimited
acquaintance with the material in this chapter is required.

Print preview

Onthe Series 33, itisrelatively straightforward for applications using the WDR print system to provide
‘Print preview’ menu commands, in addition to ‘ Print’ commands.

The basic step involved, in most cases, is to subclass the XPRI NTER class, rather to subclassLPRI NTER.
(The XPRI NTER classisinthe XADD library and is not available on the Series 3.) Theinterfaceto

XPRI NTERisvery similar to that of LPRI NTER (XPRI NTER is actually asubclass of LPRI NTER). The vast
majority of application-level print preview code isexactly the same as the application code that implements
print.

The basic model of WDR printing

Regardless of whether an application implements print preview aswell as print, and regardless of the level of
sophistication the application brings to printing, the first basic requirement, in use of the WDR print system,
is an understanding of the WbR_PRI NT struct. Thisis defined asfollowsinprdrv.cl:

13-1

OBJECT ORIENTED PROGRAMMING GUIDE

typedef struct
{

WORD f | ags; WDR_PRI NT_XXX

WORD t ypf; Typeface nunmber for WDR PRI NT_FONT
WORD f hei ght ; Font height for WDR_PRI NT_FONT (twi ps)
WORD styl e; Font style for WDR_PRI NT_FONT

WORD down; Li ne down for WDR PRI NT_LI NE

WORD i ndent ; Li ne indent for WDR_PRI NT_LI NE

WORD hei ght; Li ne height for WDR PRI NT_LI NE

WORD ri ght; Ri ght movenment for WDR_PRI NT_RI GHT
TEXT *buf; Text to print for WDR_PRI NT_TEXT
UWORD bl en; Length of data at buf for WDR_PRI NT_TEXT
} WDR_PRI NT;

(Hwif programmers will recognise this as the same asthe H_PRI NT struct.)
Essentially, the basic model of WDR printing can be summarised as follows:
the application creates and initialises a suitable top-level printing object

in due course, system code repeatedly calls the application back, passing, each time, the address of
aWDR_PRI NT struct

the application fillsin various fieldsin this struct, each time, to describe the next “ print element”,
and lets the flow of execution return into system code

eventually, printing comes to an end - either because it has finished normally, or because the user
has cancelled it, or because an error condition has arisen

the top-level printing object gets destroyed.

Thus printing can be viewed as a sequence of “ print elements”, each described by awbR_PRI NT struct. The
possible types of print elements can be seen from the list of possible bits that the application can set, each
time, inthef | ags field of theWbR_PRI NT struct:

VDR _PRI NT_PAGE this print element isto go on anew page (ie a page break will be forced, if not
already on anew page)

WDR_PRI NT_LI NE this print element isto go on anew line (ie aline break will beforced, if not
already at the start of aline)

WDR_PRI NT_FONT this print element isto bein aspecified font and font style

WDR_PRI NT_RI GHT thisprint element consists, in part, of moving the print position right by a
specified amount

WDR_PRI NT_TEXT this print element consists, in part, of text to be printed (in cases where
WDR_PRI NT_RI GHT is set aswell, the movement right takes place before the
printing of the text)

WDR_PRI NT_END this print element terminates the print process

WDR_PRI NT_KEEP the line containing this print element isto be kept, if possible, on the same
page as the following print element

WDR_PRI NT_| DLE (for advanced use only - seelater).

Calculation of page breaks

Note that applicationsin general have no need to calculate the positions of page breaks, asthey print.
System code, inside the PAGES classin FORM, automatically cal culates when page break instructions
should be emitted to the printer. This calculation takes all the following into account:

Any explicit instructions from the application, on account of print elements with the bits
WDR_PRI NT_PAGE and/or WDR_PRI NT_KEEP set

The length of the page, as supplied by the user in the ‘ Print setup’ dialog for the application

The height of each line, and (in effect) the spacing between each line, as supplied in the hei ght
and down fieldsin print elements withWDR_PRI NT_LI NE set.

13-2

13 PRINTING

System code (in PAGES) also takes care of printing relevant headers and footers at the top and bottom of
each page - with the contents of the header and footer being supplied by the user in the ‘ Print setup’ dialog
for the application.

Calculation of line breaks

The situation asregards calculation of line breaksis rather different from that of the calculation of page
breaks. Whereas the PAGES class handles “vertical” formatting (such as pagination), it is up to other
software (eg that in LPRI NTER) to handle “horizontal” formatting (such as word-wrap).

Thus the only time PAGES repositions the print position back to the beginning of alineiswhen
WDR_PRI NT_LI NE isexplicitly setinthef | ags field of aprint el ement.

Moreover, PAGES never prints any text, when moving horizontally, other than that supplied to it in aprint
element, which contrasts (again) with the case when moving vertically - since headers and footersare added
in automatically, by PAGES, whenever they are required.

Printer units

Vauessetinthedown, i ndent, hei ght, andri ght fieldsinaprint element must be supplied inprinter
units. These units vary from printer to printer (corresponding to the different degrees of resolution these
printers support). Now it might at first seem that having to deal with printer units conflicts with the general
philosophy of WDR printing, in which application code doesn't have to worry about which printer has been
selected by the user. However

there are system services, such asthel pr _sense_buf _wi dt h method of LPRI NTER, to calculate
the width, in current printer units, of a specified buffer of text

there are other system services, such asthewdr _t wi ps_t o_xy method of the WDR class (see later
for more details of this class), to assist with the transformation of printer independent units (ie
“twips’, where there are 1440 twips to an inch) into printer dependent ones

simple uses of LPRI NTER can avoid the need to specify units altogether, since they can accept the
default values of thedown, i ndent , hei ght, andri ght fieldsin any print element.

Note that the reason why word wrap and pagination cal culations must take place in printer unitsisto avoid
unnecessary rounding errorsin the use of any other units.

The difference between INDENT and RIGHT, and between DOWN and HEIGHT

Superficialy, thei ndent andri ght fieldsinthe WDR_PRI NT struct may seem to serve the same purpose.
However, thei ndent fieldisonly relevant when theWpR_PRI NT_LI NE bitissetinf | ags, andtheri ght
field isonly relevant when the WbR_PRI NT_RI GHT bitis set in flags:

when WDR_PRI NT_LI NE is set, the current print position is moved back to the beginning of the
line, then moved down by the height of oneline, and then moved right by i ndent

when WDR_PRI NT_RI GHT is set, the current print position is simply moved right by ri ght (if a
print element containsboth awWpR_PRI NT_LI NE and aWDR_PRI NT_RI GHT, the former is executed
before the latter).

Thei ndent fieldisintended for use, asits nameimplies, asthe “left indent” (or “first [ineindent”)
parameter of a paragraph of formatted text, whereasther i ght field isintended for use as the spacing
between two columns of data, or (more simply) as the representation of tab characters.

Note that the action of anyri ght movement adds on to the current horizontal offset of the print position -
as established by earlier i ndent s, ri ght s, and text printing on that line.

The difference between the down and hei ght fields may also require some attention. Both fieldsare
relevant only when WoR_PRI NT_LI NE isset. Normally, the two values are simply added together, and the
sum istaken as the amount, in printer units, to advance the print position vertically, before starting to print
the given line of text. However, code in PAGES automatically zeros the supplied value of down if the given
line of text would be the first on a page.

For example, applications that wish to implement some measure of inter-paragraph spacing additional to
inter-line spacing (or which wish, more generally, to separate related groups of printed lines by extra
spacing in between these groups) should place this additional spacing in the down field. Thiswill ensure
that extra spacing is not printed, unnecessarily, at the tops of pages. (Blank spacing at page tops, of this

13-3

OBJECT ORIENTED PROGRAMMING GUIDE

form, would be seen, on occasion, if extra spacing between groups of lines were implemented, at the
application level, simply as blank lines.)

Margins and page size

Thereisno need for application code to attempt to set thei ndent valuein such away astoinclude the
margin at the left hand edge of the page (as set, by the user, inside the ‘ Print setup’ dialog for the
application). Likewise, nor isthere any need to try to set thefirsthei ght or down valuesto try to include
the margin at the top of the page.

Rather, these adjustments are automatically made by system code. In other words, zero is a suitable default
value for bothi ndent and down.

As mentioned before, there is no need, either, for applications to determine the length of the printing area of
the page (ie the total page length, minus the sum of the top and bottom margins), since pagination is
handled by code in PAGES. Nor, in general, does an application that usesLPRI NTER need to investigate the
width of the printing area of the page, since LPRI NTER handles all (simple) word-wrap automatically.

The PRINTER class and storage of the ‘Print setup’ dialog settings

Whenever a standard ‘ Print setup’ dialog isinvoked in an application, the values displayed and edited in
thisdialog are stored within the property of an instance of the PRI NTER class. The PRI NTER classisin the
FORM library and, in addition to allowing these data values to be stored, this class also contains general
supervisory logic to do with printing. (The PRI NTER class al so encapsul ates knowledge of read/write
access to the P$? printing environment variables, described in the WDR Printing chapter of the Additional
System Information manual.)

Some applications may choose to create a PRI NTER instance as part of their standard initialisation. Other
applications only create one such instance when they are about to:

print (or print preview)
run the print setup dialog.

HWIM coderelies on the handle of any instance of PRI NTER being writtentothewserv. pri nter field
within the property of w_ws. On the Series 33, thishandle is also written to the appman. spar el field of
w_am whereit can be accessed by FORM code (eg low level print preview code).

However, HWIM applications have no need to write, themselves, the handle of the PRI NTER object into
either of these places. Thisishandled by system code, mainly insidethews_ens_pri nt _cont ext method
of WSERV. The contents of this method (which has no parameters) are, effectively,

METHOD VO D wserv_ws_ens_print_cont ext (PR_WSERV *sel f)

if (!self->wserv.printer)
sel f->wserv. printer=f_newsend(CAT_HW M_FORM C_PRI NTER, O_PR_I NI T);
}

Note that HWIM code automatically sendsw_ws aws_ens_pri nt _cont ext messagein the following
cases:

at the beginning of thews_edi t _pri nt _cont ext method of WSERV - the method which
applicationsinvoke (see below) to run the standard * Print setup’ dialog suite

at the beginning of the | pr _i ni t method of LPRI NTER - the method which applicationsinvoke
(see below) in order to print or to print preview.

Consequently, most applications never need to call ws_ens_pri nt _cont ext directly. The exceptionisif
an application wishes, for various reasons, to maintain an instance of PRI NTER at other stages of itslifetime.
For example, an application may store some of the print context (the property of the PRI NTER class) tofile,
and restore that context when thefileis opened again. In this case, typical action would be for the
applicationto call ws_ens_pri nt _cont ext itself, during itsfile loading code, and then to set various parts
of thein-memory print context, using methods of the PRI NTER class, passing data from file as parameters.
(An example of codeto achieve thisis given near the end of this chapter.)

13-4

13 PRINTING

Changing font or font style while printing

One of the aspects of the “print context” isthe so-called “default printing font”. CodeinLPRI NTER sets
thisfont (and its associated style) by default into thet ypf , f hei ght, andst yl e fieldsinthe WbR_PRI NT
struct.

Here, note that afont, for printing purposes, isidentified by a combination of its “typeface number” (the
typf value) andits“font height” (thef hei ght value). For background information about fonts and
typefaces, see the chapter WDR Printing in the Additional System Information manual.

Most applications will find it convenient not to adjust thet ypf or f hei ght valuesin any print element.
However, applications may well wish to augment thest yI e field, on occasion. For example, certain parts of
the printed output might benefit from being emphasised in bold or initalics. In thiscase, note that the
allowed valuesinthest yl e field are bit combinations of WDR_STYLE_NORMAL, WDR_STYLE_UNDERLI NE,
WDR_STYLE_BOLD, WbR_STYLE_I TALI C,WDR_STYLE_SUPER, and WDR_STYLE_SUB - where all the
meanings are obvious from their names.

Note also that variant st yI e values should be in general be orred into the default ones supplied by system
code, rather than compl etely overwriting these values. Thisisto preserve the freedom of the user, in the
‘Print setup’ dialog, to choose a“default printing font” with style other than normal.

Applications that support multiple fonts (or multiple font heights) should be aware of the set of fonts (and
font heights) supported by the current printer model (eg Epson, HPI11, Postscript), as selected by the user in
the *Print setup’ dialog. Thusif the application provides the user with a“ palette” of possible “character
styles” (or whatever), the set of fonts from which the user is allowed to choose ought to match the set
known to the loaded printer model. There are methods of the WDR class that allow access to thisinformation
(see later in this chapter for more details).

The text referenced in a print element

There are a couple of potential errorsthat applications should watch out for, regarding the lifetime of the
buffer referenced by thebuf andbl en fields of aprint element. Oneis somewhat obvious; the other less so
(but it only appliesto applications that make explicit use of the WbR_PRI NT_KEEP flag).

Inthefirst place, this buffer must, obviously enough, continue in existence after return of the application
callback routine (egthel pr _sense_t ext method) that sets up the print element. Thusit would be a
grave error to assemble a print buffer on the stack of thisroutine.

More subtly, consider aline of printed output with the WbR_PRI NT_KEEP flag set. Clearly, system code
cannot print thisline straightaway, on the current page of output, since it must first process at |east one
additional line, to see whether thefirst line should instead be held over for anew page (eg if thereis no room
to place thisline and the following one on the current page). For this reason, any print buffer associated
with aline withWbR_PRI NT_KEEP set must have a more permanent existence, and can only be re-used with
due care.

Limitations with the WDR_PRINT_KEEP flag

Note incidentally that the WbR_PRI NT_KEEP flag only has effect if itisset inthefirst print elementinaline
of output. Setting thisflag for print elements other than those which also contain WbR_PRI NT_LI NE has no
effect.

Applications which require more complicated pagination scenarios will need to perform a*“ pagination pass’
prior to actually printing (this happens, in different ways, in both the Series 3 Word Processor and the Series
3 Spreadsheet) and will thereafter only set the WbR_PRI NT_PAGE flag, and never the WDR_PRI NT_KEEP flag.

The need to specify font and style for each line

One more potential problem should be pointed out (though thiswill be of concern only to programmers who
interact more deeply with the PAGES class). On the face of things, if the font never changes, throughout the
course of printing, there oughtn't to be any need to specify thet ypf , f hei ght, andf st yl e values anew
for every print element. However, it must be borne in mind that two print elements which the application
regards as being contiguous may, in the actual course of printing, end up on two different pages, with a
footer and a header separating them. Given that the user is, in general, free to specify the print fonts of the
header and the footer to differ from that used in the body of the page, it can now be appreciated why, as far
as PAGES is concerned, it isimportant for application-generated print elements to have their print font
specified explicitly each time.

13-5

OBJECT ORIENTED PROGRAMMING GUIDE

Programmers needn't worry about any particular inefficiency this might entail. Font change instructions are
sent to the printer itself only when thereis an actual change in between two adjacent print elements.

Use of WDR_PRINT_IDLE

A small proportion of applications may find themselves unable to generate print elementsimmediately (ie
sufficiently quickly) in response to a system callback. For example, fetching and assembling the data to
print may involve one or more application-specific active objects. Thiskind of application may wish to make
use of print elements withWbR_PRI NT_| DLE set.

If PAGES finds that WbR_PRI NT_I DLE is set in any print element, the rest of that print element is disregarded
and the print subsystemis effectively placed into a state of suspension. Thus no more application callbacks
will take place until the print system isrestarted by an explicit application call.

The way that the application lets system code know to restart the print subsystem isto send the PAGES
object anao_queue message. Applications using LPRI NTER can find the handle of the PAGES object in the
I printer. pages fieldinitsproperty.

Using LPRINTER for standard printing purposes

The printing requirements of most applications can be met by them defining an application-specific subclass
of LPRI NTER, in which they

REPLACE the method| pr _sense_t ext (which iSDEFERred at the LPRI NTER level)
declare sufficient property to be able to keep track of the progress of printing.
Then when the user invokes the ‘ Print’ menu command in the application:

the application may choose to present adialog (a so-called ‘ Print details' dialog), to collect
parameters describing which portions of its data are to be printed, and (possibly) with what options

next, the application createsits subclass of LPRI NTER and sendsit anl pr _i ni t message

this message does not return until printing has completed (internally, acall toam st art ismade);
accordingly, the next lines of code can destroy the LPRI NTER subclass object

however, in the meantime, thel pr _sense_t ext message will have been called repeatedly.
Thustypical command manager code, in the print method, might look like

RunPri nt Det ai | sDi al og();
hDest roy(f_newsend(CAT_APP_APP, C_APP_LPRI NTER, O LPR_INIT));

Note: this code fragment assumes that the results of the “print details” dialog is available to the LPRI NTER
subclass viaglobal data. An alternative approach would of course be toREPLACE thel pr _i ni t method
too, so that the command manager code would become something along the lines of

PRI NT_DETAI LS_RBUF r buf ;

RunPri nt Det ai | sDi al og(& buf);
hDestroy(f_newsend(CAT_APP_APP, C APP_LPRI NTER, O LPR_I NI T, &r buf));

with the contents of thel pr _i ni t method looking like

METHOD VOI D app_| printer | pr_init(PR_APP_LPRINTER *sel f, PRI NT_DETAI LS _RBUF
*
pr buf)

{

sel f->app_| printer. prbuf=prbuf;

p_supersend2(sel f, O LPR_INIT); /* calls amstart */
}

The syntax of the LPR_SENSE_TEXT callback

(Hwif programmers may note that this isthe same as the syntax of the Pri nt Li ne callback function, where
Pri nt Li ne isthe function name passed as the parameter tohPri nt .)

13-6

13 PRINTING

This method passes the single parameter pr , which isapointer to aWbR_PRI NT data structure. Application
code adjusts one or more or the fieldsin* pr , as described above.

Thereturnvaluefrom | pr _sense_t ext hasthe following significance:

azero return value means that all print elements have already been defined, and that the print
subsystem should now terminate

anon-zero return value means that the application has not finished printing yet, and expects
additional callstol pr _sense_t ext to be madein due course.

Note that LPRI NTER fillsin many of the partsof * pr before sendingsel f thel pr_sense_t ext message:
thef | ags field is set toWDR_PRI NT_FONT| WDR_PRI NT_LI NE| WDR_PRI NT_TEXT

thetypf,f hei ght,styl e, andhei ght fieldsare al set to values reflecting the default font and
default font style (which the user can specify in the ‘ Print setup’ dialog suite

thedown andi ndent fields are both set to zero.

Thus all that needsto befilled in, in most cases, arethe buf andbl en fields. On some occasions, the value
of f I ags may need to be adjusted; likewisethedown, i ndent , andri ght fields. Finally, avaluewill need
to be provided for ri ght in any case whenWbR_PRI NT_RI GHT issetinf | ags. (Seebelow for some
examples)

LPRINTER and word-wrap

Asmentioned above, LPRI NTER takes care of word-wrap automatically on behalf of applications: if the text

at pr - >buf istoo wideto fit on the space remaining to the end of theline, LPRI NTER splitsit up into two or
more sections, and thus creates two or more print elements (without any intervention being required to this
end from the application). For the print elements formed in thisway:

for new lines, thei ndent valueistaken fromthe subsqi nd field withinLPRI NTER property
(subclasses can write directly to this field within application code - see below for an example)

unless the user has disabled widows/orphans control in the * Print setup’ dialog suite, the flag
WDR_PRI NT_KEEP isorred into al but the last of these print elements.

Note that the word-wrap cal culation presupposes use of the default font and the default style throughout.
If an application prints using multiple fonts or font-styles, it may need to subclassthel pr _r ead method of
LPRI NTER, instead of thel pr _sense_t ext method - seelater for more details.

Working out widths

If, unusually (eg to support printing in columns), an application needs to know more about relative widths of
various strings of text, thel pr _sense_buf _wi dt h method may be used. Thistakestwo parameters:

aTEXT* pointer to the buffer of text
an | NT giving the length of the buffer.
This method returns the width of the buffer, in current printer units.

Note that this method cannot be accessed until inside one of thel pr _sense_t ext callbacks- sinceit relies
on fieldsin LPRI NTER property that are not set up until just before the first such callback.

Note also that this calculation presupposes use of the default font and the default style. See later for how to
calculate widths of text in other fonts and styles.

Another width value that may be of interest to applicationsis stored in thewi dt h property field of

LPRI NTER. Thisisthewidth, in printer units, of the printing area of the page (ie the complete page width
lessitsleft and right margins). Again, thisvalueis not available prior to the first callback to

| pr_sense_text.

Launching the print setup dialog suite

If (asnormal) an application that supports print also supportsa‘ Print setup’ menu command, the code that
isrequired in the command manager method for print setup is usually just the singleline:

13-7

OBJECT ORIENTED PROGRAMMING GUIDE

p_send2(w_ws, O WS_EDI T_PRI NT_CONTEXT) ;
For interest's sake, the entire contents of thews_edi t _pri nt _cont ext method of WSERV is given here:

METHOD VO D wserv_ws_edit_print_context (PR WSERV *sel f)
{
p_send2(sel f, O WS_ENS_PRI NT_CONTEXT) ;
runHwi nDi al og(- SYS_PRI NT_CONTROL_DL, C_PRNCTRL, NULL) ;

}

Examples of use of LPRINTER

This section presents two related examples of the use of LPRI NTER. Both are complete applicationsin their
own right. Each example allows the user to specify a start date, and a number of days, and then printsthe
list of dates specified, in expanded form, eg as follows:

Monday, 18th October 1993
Tuesday, 19th October 1993
Wednesday, 20th October 1993

The user isalso able, in each case, to specify a“separation” between months, which can be either “No gap”,
“Half aline”, or “Completeline”. Alsoin each case, the user is given an opportunity, before the printing
actually takes place, to alter the valuesin the ‘ Print setup’ dialog.

The second exampl e builds on the first, adding additional formatting to produce printed output in two
columns, with effect asin:

Monday, 18t h Oct ober 1993
Tuesday, 19t h Oct ober 1993

Wednesday, 20t h Oct ober 1993

On installation of the OOP component of the SDK, the source code for the second exampleis copied into a
\sibosdk\tprint directory.

Framework of the example applications
Unusually, these applications have no menu bar or client window. Thisis possible because, throughout
their lifetimes, adialog is always presented:

first, the ‘Print details' dialog of the application

next, the * Print setup’ dialog

finally, the HWIM *Printing’ dialog, that keeps track of the progress of printing.

Inimplementation terms, all this happensinside thews_dyn_i ni t initialisation callback to the WSERV
subclass of the application. Code never returns from here, since, after the printing is complete, acall to
p_exit ismade.

The entire contents of the category file, demo.cat, of the first example, are asfollows:
| MAGE denp

EXTERNAL olib
EXTERNAL hwi m

| NCLUDE hwi nman. g
I NCLUDE dI gbox. g

| NCLUDE | printer.g
I NCLUDE tine.g

CLASS dewserv wserv

{
REPLACE ws_dyn_init

}

13-8

13 PRINTING

CLASS dedl g dl gbox

{
REPLACE dl _key
TYPES
{
typedef struct
{
UWORD dayno;
UWORD ndays;
UWORD gap;
} RBUF_LP;

}
CLASS delp lprinter

{
REPLACE | pr_init
REPLACE | pr_sense_t ext
PROPERTY 1
{
VO D *time;
RBUF_LP rbuf;
TEXT buf [LN_TI ME_DATE_STR] ;
}
}

From this, it can be seen that there are four key objectsin the application:
the peveerv object, which providesthews_dyn_i ni t method
the DEDL G object, which supervisesthe ‘ Print details’ dialog of the application

the DELP object, which is asubclass of LPRI NTER

aTl ME object, which is used to obtain the textual representations of the dates printed.

The ‘Print details’ dialog
The following resources define the ‘ Print details' dialog of the application (in demo.rss):

RESOURCE MENU del p_gap_chli st

{

items =
{
CHOl CE_I TEM { str="No gap";},
CHO CE_ITEM { str="Half a line";},
CHO CE_I TEM { str="Conplete line";}
b

}

13-9

OBJECT ORIENTED PROGRAMMING GUIDE

RESOURCE DI ALOG del p_dl g

title="Print list of days";
f1 ags=DLGBOX_NOTI FY_ENTER| DLGBOX_RBUF_FI LLED;
control s=

{
CONTROL

{

cl ass=C_DTEDI T,

pronpt ="Start date";

i nfo=DTEDI T { flags=I N DTEDI T_DDMMYYYY; };

b,
CONTROL

cl ass=C_NCEDI T,
pronpt =" Nunber of days to print";
i nf o=NCEDI T

{

| ow=10;

current =20;

hi gh=200;

b
b,
CONTROL

cl ass=C_CHLI ST;
pronpt =" Space between nont hs";
i nfo=CHLI ST { rid=del p_gap_chlist; };
}
s
}

When run, the dialog looks like

i Print list of daus

"Start date HE-18.-19393
*Mumber of days to print 26
Space between months Mo gap

Codeinthedl _key method of the DLGBOX subclass senses the valuesin the fieldsin this dialog into an
RBUF_LP result buffer:

#i ncl ude <deno. g>
#i ncl ude <hwi m h>

#pragma METHOD_CALL

METHOD | NT dedl g_dl _key(PR _DLGBOX *sel f)
{
RBUF_LP *prbuf;

prbuf =sel f - >dl gbox. r buf;

pr buf - >dayno=hDl gSenseDt edi t (1) ;
pr buf - >ndays=hDl gSenseNcedi t (2);
pr buf - >gap=hDI gSenseChl i st (3);
return(WN_KEY_CHANGED) ;

}

Startup code and WS_DYN_INIT code
Thisdialog codeisinvoked (indirectly) from the codein thews_dyn_i ni t method of the application:

#i ncl ude <demo. g>
#i ncl ude <deno.rsg>
#i ncl ude <hwi m h>

13-10

13 PRINTING

LOCAL_C I NT LaunchDi al og(I NT cl ass, I NT resid, VO D *rbuf)
{
DL_DATA dl d;

dl d.id=resid;

dl d. r buf =r buf ;

dl d. pdl g=NULL;

return hLaunchDi al (CAT_DEMO_DEMO, cl ass, &dl d) ;
}

#pragma METHOD CALL

METHOD VOI D dewserv_ws_dyn_i ni t (PR_DEWSERV *sel f)
ERBUF_LP rbuf;
if (LaunchDi al og(C_DEDLG, DELP_DLG, &r buf))

p_send2(sel f, O WS_EDI T_PRI NT_CONTEXT) ;
hDestroy(f_newsend(CAT_DEMO DEMO, C DELP, O LPR I NI T, & buf));

}
p_exit(0);
}

Inturn, thiscode isinvoked (again indirectly) from that innai n:
#i ncl ude <deno. g>

GLDEF_C VOl D mai n(VOI D)

{
I N_HW MVAN app;
I N_WSERV wser v,

p_linklib(0);
app. fl ags=FLG_APPMAN_RSCFI LE| FLG_APPMAN_SRSCFI LE| FLG_APPMAN_CLEAN;
app. wserv_cat =p_get | i bh(CAT_DEMO_DEMO) ;
app. wserv_cl ass=C_DEWSERV;
wserv.com cat =p_get|i bh(CAT_DEMO HW M) ;
wserv.com cl ass=C_COMVAN,;
p_send4(p_new(CAT_DEMO HW M C_HW MMAN), O AM | NI T, &app, &wserv) ;
}

Note incidentally that the resource file for this application only contains three resourcesin all: the two listed
above, which define the ‘ Print setup’ dialog, plus a“dummy” WSERV_I NFO resource defined as follows:

#i nclude <hwi mrh>
#i ncl ude <hwi mrg>

RESOURCE WSERV_I NFO denp_accs
{

menbar _i d=0;
first_conmeO;
accel ={"'x'};

}

(Although the application has no true menu bar - since it never returnsto a “ base state” without a dialog
being present - it isarequirement of all HWIM applicationsthat the first resourcein their own resourcefile
isaWsERV_I NFO. Thisresourceisloaded by system startup code, and must be present.)

The LPRINTER initialisation code (first example)
The LPRI NTER subclassinitialisation code has two parts:
that which takes place outside of any | pr _sense_t ext callback

that which takes place during thefirst callback tol pr _sense_t ext (by whichtime, all required
system initialisation will be complete).

Thesetake place, respectively, in theroutinesdel p_I pr_i nit and | ni t Ti meObj ect , with the former
being called from codeinthews_dyn_i ni t method (see above), and the latter from code in
| pr_sense_t ext (seebeow):

13-11

OBJECT ORIENTED PROGRAMMING GUIDE

#i ncl ude <deno. g>

#define TI ME_FMI_FLAGS
(PR_TI ME_MONTH_NAME| PR_TI ME_SUFFI X_NAME| PR_TI ME_DAY_NAME)

LOCAL_C VOI D I ni t Ti meObj ect (PR _DELP *sel f)

{
P_DAYSEC ds;
SE_TI ME_FORMAT fnt;

ds. day=sel f - >del p. rbuf . dayno;

ds. sec=0;

sel f->del p. ti me=f _new(CAT_DEMO_OLI B, C_TI ME) ;

p_send4(sel f->del p.tine, O TO SET, SET_TI ME_DAYSEC, &ds) ;
fm.flags=TI ME_FMI_FLAGS;

p_send4(sel f->del p.time, O TO SET_FORMAT, &f nt, TI ME_FMT_FLAGS) ;
}

#pragma METHOD_CALL
METHOD VOI D del p_l pr_init(PR_DELP *sel f, RBUF_LP *prbuf)

{

sel f->del p. rbuf =(*prbuf);
p_supersend2(sel f, O LPR_INIT);
}

The LPR_SENSE_TEXT method (first example)
METHOD | NT del p_I pr_sense_t ext (PR_DELP *sel f, WDR_PRI NT *pr)

{
P_DATE dt;

if (!self->delp.tinme)
InitTi meObject(self);
else if (!self->delp.rbuf.ndays)
return(FALSE) ;
el se
p_send4(sel f->del p.time, O TO ADD DAYS, 1, 0);
p_send4(sel f->del p.ti me, O TO _SENSE, SENSE_TI ME_DATESTR, &sel f - >del p. buf [0]);
pr->buf =(&sel f->del p. buf[0]);
pr->bl en=p_sl en(pr->buf);
if (self->delp.rbuf.gap)

p_send4(sel f->del p.time, O TO SENSE, SENSE_TI ME_DATE, &dt) ;
if (!dt.day)
{

pr->down=pr - >hei ght ;

if (self->delp.rbuf.gap==1)
pr->down>>=1;
}

sel f - >del p. rbuf. ndays- -;
return(TRUE);

}
Second example: additional initialisation code
To modify the example so that the printing takes place in columns, al that hasto changeis
the definition of DELP in the category file
the DELP code (of course)
one new STRI NG resource is added to the resource file.

The additional initialisation determines the values of some new property fieldsinDELP. The new class
definition of DELP becomes

13-12

13 PRINTING

CLASS delp lprinter

{

REPLACE | pr_init
REPLACE | pr _sense_t ext
CONSTANTS

{

DELP_STATE_COL1 0
DELP_STATE_COL2 1
DELP_STATE_COL3 2

}
PROPERTY 1
{
VO D *tinme;
UWORD col wi d;
UWORD ri ght;
UWORD st at e;
RBUF_LP rbuf;
TEXT dnanme[E_MAX_DAY_NAME] ;
TEXT buf[LN_TI ME_DATE_STR] ;
}
}

The new initialisation routine Fi ndW dt hFi r st Col urm, called from within the first visit to
del p_I pr_sense_t ext (justafterinit Ti meObj ect iscalled) calculatesthe required width, in printer
units, for the first column of printed output. Thisworks asfollows:

LOCAL_C VOI D Fi ndW dt hFi r st Col um(PR_DELP *sel f)
{
I NT i;
TEXT buf [E_MAX_DAY_NAMNE] ;
UWORD wi d;

for (i=0; i<7; i++)
{
p_nnday(&buf[0],i);
wi d=SenseBuf W dt h(sel f, &uf[0]);
if (wid>self->delp.colwd)
sel f->del p. col wi d=wi d;

sel f - >del p. col wi d+=SenseBuf Wdth(sel f," "); /* two spaces */
if (self->delp.colwi d>(3*self->lprinter.w dth/4))

{

hl nf oPri nt (DELP_PAPER_NARROW ;

p_sl eep(20);

p_| eave(RUN_ACTI VE_CLEANUP_NONOTI FY) ;

sel f->l printer. subsqi nd=sel f->del p. col wi d;

}

Theroutine SenseBuf W dt h, used withinFi ndW dt hFi r st Col unm, isjust aconvenience layer over the
| pr_sense_buf _wi dt h method of LPRI NTER:

LOCAL_C UI NT SenseBuf W dt h(PR_DELP *sel f, TEXT *pb)

{
return(p_send4(sel f, O LPR_SENSE_BUF_W DTH, pb, p_sl en(pb)));

}

Note one more feature of the code inFi ndW dt hFi r st Col urm - the check that the width required for the
first column does not leave too little room left for the remaining column. A more professional application
may wish to take more sophisticated action in thiskind of situation. (For example, the Series 3 Spreadsheet
application performs a pre-printing “ pagination” run that determines how many pageshorizontally are
reguired, to print a given range of spreadsheet columns.)

The three states in printing a two-column display

In this example, where there are only two columns per date to be printed, the process of printing each date
string is split intothree separate visitsto the | pr _sense_t ext method, resulting in three different print
elements:

thefirst visit prints the text of the first column: since this starts anew line, the default LPRI NTER
flags of WDR_PRI NT_LI NE and WDR_PRI NT_TEXT are left asthey are; however, the width of the
text actually printed (which will not exceed that of the column itself) is determined, by making

13-13

OBJECT ORIENTED PROGRAMMING GUIDE

another call to SenseBuf W dt h, in order that the amount by which the print position should be
moved right, in the next print element, can be known

the second visit consists just of moving the print position forward from the end of the text printed
in the first column to where the text in the second column should start; the default flags

WDR_PRI NT_LI NE and WDR_PRI NT_TEXT must be removed in this case, and the flag

WDR_PRI NT_RI GHT set instead

finally, the third visit consists of printing the text for the second column; in this case, the flag
WDR_PRI NT_LI NE hasto be removed, but WbR_PRI NT_TEXT remains.

(The way this mechanism would be extended to printing more than two columns should be clear enough.)

The LPRI NTER subclass keeps track of what it hasto do next, in any particular callback, by using the st at e
property field, which rotates around the three possible DELP_STATE_XXX values.

The codefor theentirel pr_sense_t ext method therefore becomes
METHOD | NT del p_I pr_sense_t ext (PR_DELP *sel f, WDR_PRI NT *pr)

{
P_DATE dt;
P_DAYSEC ds;

if (!self->delp.tinme)

{
I ni t Ti meObj ect(sel f);
Fi ndW dt hFi r st Col um(sel f);

}
else if (!self->del p.rbuf.ndays)
return(FALSE) ;
switch (self->del p.state++)
{
case DELP_STATE_COL1:
if (self->delp.rbuf.gap)
{
p_send4(sel f->del p.ti me, O TO SENSE, SENSE_TI ME_DATE, &dt) ;
if (!dt.day)

pr - >down=pr - >hei ght ;

if (self->delp.rbuf.gap==1)
pr->down>>=1;

}

}
p_send4(sel f->del p.ti me, O TO SENSE, SENSE_TI ME_DAYSEC, &ds) ;
p_nnday(&sel f - >del p. dname[0] , P_WEEK(ds. day)) ;
sel f->del p.right=sel f->del p. col wi d- SenseBuf W dt h(sel f, &sel f-
>del p. dnane[0]) ;
pr->buf =(&sel f - >del p. dnane[0]) ;
br eak;
case DELP_STATE_COL2:
pr->flags&=(~(WDR_PRI NT_LI NE| WDR_PRI NT_TEXT)) ;
pr->flags| =WWDR_PRI NT_RI GHT;
pr->right=sel f->del p.right;
return(TRUE) ;
case DELP_STATE _COL3:
p_send4(sel f->del p.tinme, O TO SENSE, SENSE_TI ME_DATESTR, &sel f -
>del p. buf[0]);
pr->buf =(&sel f->del p. buf[0]);
pr->fl ags&=(~WDR_PRI NT_LI NE) ;
pr->i ndent =sel f - >del p. col wi d;
sel f - >del p. rbuf. ndays--;
p_send4(sel f->del p.time, O TO ADD DAYS, 1, 0) ;
sel f - >del p. st at e=DELP_STATE_COL1,;
}
pr->bl en=p_sl en(pr->buf);
return(TRUE);
}

More details about printing in columns with LPRINTER

As mentioned above, LPRI NTER checks all text passing through it, to ensure that it fits within the
appropriate part of the page width. 1nthe context of the above example of printing in columns, the text in the

13-14

13 PRINTING

first column is guaranteed always to fit (otherwise the check on the rel ative width of the first column and the
page width would have failed). However, it is certainly possible that the text in the second column might
end up being wrapped. It waswith an eye on this possibility that the following two lines of code were
included in DELP code above:

sel f->l printer.subsqgi nd=sel f->del p. col wi d; (inFi ndW dt hFi r st Col urm)

pr->i ndent =sel f - >del p. col wi d; (intheDELP_STATE_COL3 caseinthel pr_sense_t ext
method).

Thefirst of these lines of code tells the superclassLPRI NTER code that, if text passed to it ever does need
to be word-wrapped, the second line should be positioned with a“ subsequent indent” (subsgi nd value) as
specified. (Werethisleft at its default value of zero, any new line required would start off in the space
intended to be reserved for theleft hand column.)

The second of these lines of code is somewhat more obscure. The pointis that LPRI NTER code does not
track the horizontal offset where the print position has reached. For thisreason, in any word-wrap
calculation, the only sensible width value for LPRI NTER to wrap text within is equal to the expression

sel f->l printer.w dth-pr->i ndent

Now in principle LPRI NTER could be used to create printed displays of the “hanging bullet” variety, in
which text in the “left-hand column” always fits on just one line, whereas text in the “right-hand column” is
typically longer, and can flow over several lines. However, acouple of words of caution are appropriate
here:

support for thiskind of “hanging bullet” printing by LPRI NTERisonly available, effectively, inthe
Series 3aversion of the ROM code

in any case, no “widows and orphans’ control takes place, since, as mentioned earlier, the
WDR_PRI NT_KEEP flag is effective only when presentin the first print element of aline.

In short, programmers requiring this kind of printed output would be best advised to dig deeper into the
WDR print system possibilities- such as are featured in the remaining sections of this chapter.

Advanced uses of LPRINTER - and beyond

In this section, more features of the code inLPRI NTER are gradually introduced - up to the point where it
should be possible to see how to print without any use of LPRI NTER - should that be desired.

This section can be skipped altogether by programmers whose needs are met by the information in the
preceding sections.

The LPR_READ method of LPRINTER
Consider the codeinthel pr _r ead method of LPRI NTER:

13-15

OBJECT ORIENTED PROGRAMMING GUIDE

METHOD VO D | printer | pr_read(PR_LPRINTER *sel f, | NT x, WDR_PRI NT *pr)

{
if (!'self->lprinter.wdr)
ReadWdr Dat a(sel f);
if (self->lprinter.defer.blen)
{
*pr=sel f->lprinter.defer;
pr->i ndent =sel f->| printer. subsqi nd;
}

el se

{
pr->fl ags=WDR_PRI NT_FONT| WDR_PRI NT_LI NE| WDR_PRI NT_TEXT;
pr->typf=self->lprinter.f.fid;
pr->f hei ght=sel f->l printer.f.height;
pr->style=self->lprinter.f.style;
pr->hei ght =sel f->l printer.| height;
pr - >down=0;
pr->i ndent =0;
if (!p_send3(self, O LPR_SENSE_TEXT, pr))
{
pr->fl ags=WDR_PRI NT_END;
return;

}

self->lprinter.defer=(*pr);
if (pr->indent>=self->lprinter.w dth)

pr->i ndent =0; /* guard agai nst incorrect use */
pr->blen=fit_line(self->lprinter.wtab, pr->buf, pr->blen,

sel f->l printer.w dth-pr->indent, Get Text Pri nterW dt h);

if (pr->blen==self->lprinter.defer.blen)

sel f->l printer.defer.bl en=0;
el se

sel f->l printer.defer.blen-=pr->blen;
sel f->l printer.defer.buf+=pr->blen;
self->lprinter.defer.flags| =WWDR_PRI NT_LI NE; /* line added for Series
3a version */
if (!((PRINTER_PARAMS *)
p_send2(w_ws->wserv. printer, O PR _GET_PARAMS)) - >d. wo_control)
pr->fl ags| =WWDR_PRI NT_KEEP;

}

As can be seen, thisisthe routine which containsthe call tol pr _sense_t ext - the deferred method that
al LPRI NTER subclasses haveto provide. Theroleof | pr _r ead isto provide alayer in between print
elements defined by application code and print elements as required by the PAGES class (see later for further
discussion of PAGES - for the moment it sufficesto explain that thel pr _r ead messageis sent toLPRI NTER
by PAGES). Thel pr _r ead method sets up defaults that are suitable for most LPRI NTER subclasses, and
also performsword-wrapping (viathe call tothefit _I i ne routine) that is, again, suitable for most
subclasses.

However, in some cases, this behaviour isno longer so helpful, and has to be changed - in which case the
| pr _r ead method will, itself, have to be REPLACEd.

LPRINTER property introduced

To make sense of thecodeinl print er _| pr_read, reference will have to be made to various features of
the full class definition of LPRI NTER:

13-16

13 PRINTING

CLASS Iprinter root

{

REPLACE destr oy

ADD | pr_init

ADD | pr_read

ADD | pr_sense_buf_wi dth
DEFER | pr _sense_t ext

PROPERTY
{
VOl D *pages; Copy for reference only
VO D *wdr; Copy for reference only
SCRLAY_FONT f; The default font
WDR_PRI NT defer; In case previous data was too wi de
UBYTE *wt ab; W dth table
UWORD | hei ght ; Line height in printer units
UWORD wi dt h; W dth of region to print to
UWORD subsqi nd; I ndent for subsequent lines (if wapped)
}

}

Thewdr fieldin property isused, amongst other ways, as aflag asto whether thisisthefirst call to the
method (in the current print session). If itis(inwhich casethewdr property field iSNULL), the initialisation
routine ReadWir Dat a iscalled. Seelater for more details of theinitialisation of the LPRI NTER data.

Apart fromtesting the value of wdr , the codein| pri nter _I pr_read splitsinto two cases:

if def er. bl en isnon-zero, it means that the last text buffer specified by the subclass did not all fit
on the space remaining on the previous printed line, and that some of this buffer remainsto be
processed; in this case, thiscall tol pr _r ead will not resultinacall tol pr_sense_t ext

otherwise, thereis no “deferred” text remaining, and the subclass has to be asked, by means of
sendingsel f anl pr_sense_t ext message, to supply another WbR_PRI NT “print element”.

In either case, the next buffer of text issubmitted tof it _| i ne, to see whether thiswill al fit within the
remaining page width.

If an application subclasses! pr _r ead, it may choose, however, to do one or more of the following:
skip the word-wrap cal culation altogether

calculate “clipping”, whereby text that istoo wide to fit within an allocated region of the page does
not get word-wrapped, but rather is printed in atruncated form (with trailing or leading characters
being omitted, as appropriate to the application)

make the word-wrap calculation (or a clipping calculation) mor e sophisticated, by allowing
variable fonts or variable font styles.

The default word-wrapping algorithm
Theroutinefit_I i ne ishardly sophisticated:

(aswell as being used withinLPRI NTER code, fi t _I i ne isalsoutilised within thews_wr ap_par a method
of WBERV)

13-17

OBJECT ORIENTED PROGRAMMING GUIDE

GLDEF_C INT fit_line(VO D *wrap, TEXT *buf, INT blen, INT wid, I NT (*f)(VO D
*, TEXT *,INT))
/*
Returns the nunber of characters, out of the buffer passed,
that can forma line of up to the preset w dth.
*/
{
I NT nchars;
I NT thischar;

I NT safe;
I NT seenbr eak;

nchar s=0;
seenbr eak=FALSE;
while (blen--)

{
t hi schar =(*buf);
wid-=(*f)(w ap, buf ++, 1) ;
nchar s++;
if (thischar==" ")

{

saf e=nchars;
seenbr eak=TRUE;

else if (w d<0) /* right margin burst */
return(seenbreak? safe: nchars-1);

return(nchars);

}

Asisevident, the only word delimiter recognised by fit _I i ne isthe space character.

Now afundamental limitationof fi t _I i ne isthat all the charactersin the buffer passed to it are assumed to
belong to the same font (and to have the same style). Thusthe callback functionf (whichis

Get Text Printer W dt h inthecasewhenfit_Iineiscaledfroml printer_I pr_read) disregardsthe
offset of characters within the buffer (for example, thewidth of thefirst ‘I’ in“ITALIC” would always be
taken as the same as that of the second ‘I’ in that word).

Subclasses that REPLACE | pr _r ead may in fact consider any of the following three kinds of modifications
to this method of reckoning widths:

text in one column may have a different font and/or style than that in another column

the text within one column (or, in the case when there is only one column across the whole page,
the text within one line) may itself contain more than one font and/or style

special characters, such as tabs, may need additional consideration.

Thethird of these possibilitiesis beyond the scope of this chapter. However, for each of the first two
possibilities, it is clear that a generalisation of the Get Text Pri nt er W dt h routine will be required.

Calculating widths of text with variable font

Thel pr_sense_buf _wi dt h method of LPRI NTER simply consists of acall to this sameroutine,
Get Text Pri nter W dt h:

METHOD | NT I printer_I pr_sense_buf_wi dt h(PR_LPRI NTER *sel f, TEXT *buf, | NT | en)

{
return(Get Text PrinterWdth(self->lprinter.wtab, buf,len));

}

Inturn, the code for Get Text Pri nt er W dt h isasfollows (note: this codeis also the same as the
wdr _sense_wi dt h method of the WDR class):

13-18

13 PRINTING

LOCAL_C I NT Get TextPrinterWdth(VO D *pwi d, TEXT *buf, | NT | en)
/~k
Return the printed width (in printer units) of buf, len
*/
{
I NT suni

if (*(UBYTE *)pw d==0)
return(len*(*((UBYTE *)pwi d+1)));
for (sune0O;len--;)
sum+=*((UBYTE *) pwi d+*buf ++) ;
return(sum;

}

From this code, the structure of WDR printer font width tables can be seen. Thesefall into two types:

for monospaced fonts, the tableis only two byteslong, with the first byte beingo and the second
being the common width, in printer units, of any of the charactersin the font

for proportional fonts, the table is 256 bytes long, with the width of character ' a' (which has
ASCII value 65), say, being the 65th byte in the table, and so on.

Where printer font width tables come from

The fieldwt ab inLPRI NTER property isthe address of the font width table of the default font for the
currently selected printer model. The value of wt ab isfilled in by the following line of code in the
ReadWdr Dat a routine called during the first visit tol pri nter _I pr_read:

sel f->l printer.wab=(UBYTE *)p_send5(sel f->| printer.wdr,
O WDR_GET_W DTH_TABLE, sel f->l printer.f.fid,
self->Iprinter.f.height,self->lprinter.f.style);

As can be seen, printer font width tables are accessed by means of thewdr _get _wi dt h_t abl e method of
the WDR class. Briefly, the WDR class encapsul ates the logic of reading printer driver .wdr files. (Seethe
WDR Printing chapter in the Additional System Information manual for more information about .wdr files.)

There are three parametersto thewdr _get _wi dt h_t abl e method:
the typeface number of the required font
the height identifier of that font
the particular font style required.

In the case when this method is called by LPRI NTER, these three parameters are taken from details of the
default font associated with the current printer, and therefore are bound to be valid. But even if valuesare
passed that are not directly known to the current printer model - for example, there could be an enquiry
concerning an unknown typeface - the method will follow the standard WDR customs of “font mapping” and
“font substitution”: detailswill be supplied of the “nearest” font, font height, and style actually known to
the printer model.

LPRINTER initialisation - phase one
As has been mentioned, the initialisation of an LPRI NTER instance takes place in two stages:

some takes place within the LPR_I NI T method

another portion of the initialisation cannot, however, proceed until other parts of the WDR print
system have been put into afull state of readiness, and has to wait until the first print element is
requested, by PAGES, before taking place.

This section looks at the first of these two stages.

Thecodeinthe LPR_I NI T method of LPRI NTER isas follows:

13-19

OBJECT ORIENTED PROGRAMMING GUIDE

METHOD VO D | printer | pr_init(PR_LPRINTER *sel f)
/*
Returns only when printing is conplete
*/
{

I NT preview,
PRI NTER_PARAMS *par ;
RBUF_PRI NTI NG r buf ;

previ ew=sel f->l printer.subsqind;
sel f->l printer.subsqi nd=FALSE;
p_send2(w_ws, O WS_ENS_PRI NT_CONTEXT) ;
par =(PRI NTER_PARAMS *)p_send2(w_ws->wservV. printer, O PR _GET_PARAMS) ;
sel f->l printer.w dt h=par->p. pg. body.width; /* in twi ps at the noment */
self->lprinter.f=par->d.f;
if (preview)
return;
rbuf.calls. hread=self;
rbuf.calls.nread=0_LPR_READ;
rbuf . ppages=(&sel f->l printer.pages); /* to take pages handl e when known */
runHwi nmDi al og(- SYS_PRI NTI NG_DI ALOG, C_PRI NTI NG, &r buf) ;

}
In fact, thisisthe Series 3aversion of the code; the Series 3 version omits the lines

previ ew=sel f->| printer.subsqi nd;
sel f->l printer. subsqi nd=FALSE;

and

if (preview)
return;

These are connected with support for print preview (which is not available on the Series 3) and will be
discussed in more detail later in this chapter.

Apart from these lines, this code

sendsw_ws aws_ens_pri nt _cont ext message, for reasons discussed earlier in this chapter
(essentially, to ensure that an instance of the PRI NTER class has been created and initialised)

senses the width of the printing portion of the page, from the PRI NTER instance, and also the
SCRLAY_FONT structure describing the default font for the current printer model

begins to set up an appropriateinitialisation struct for the PAGES active object

launches an Hwim standard dialog (the PRI NTI NG dialog), whosed!l _dyn_i ni t method will, in
turn, set more code in motion that will create and initialise PAGES

sincethe PRI NTI NG dialog callsam st art, theLPR_I NI T method does not return until this dialog
has compl eted.

A brief description of the PAGES active object class

Clearly there hasto be some active object involved with printing - in order that the lengthy process of
printing can be interleaved with callsto theao_r un method of w_ws (for example, to service redraws, or
handle keypresses); PAGES is this active object. PAGES in fact lies at the heart of the WDR printing
subsystem; whereasit is possible for an application (for example, the Series 3 Word Processor and Database
application) to perform WDR printing without making any use of LPRI NTER, it is not possible to avoid using
PAGES.

Whilst afull description of PAGES is beyond the scope of this manual, various points should be noted.

For itsinitialisation, PAGES requires to be initialised with, among other items, two object handles and two
method numbers that collectively make up the PAGES_CALLS struct:

13-20

13 PRINTING

typedef struct

VOI D *hread; Cal | back handl e for reading print elenments
WORD nr ead; Cal | back method for reading print elenments
VOl D *hdone; Cal | back handl e for %lone & conpletion
WORD ndone; Cal | back nethod for %lone & conpletion

} PAGES_CALLS;

Whenever PAGES requires another print element, for the body area of apage, it sendshr ead annr ead
message. In the case when printing is started by LPRI NTER, hr ead is set to the handle of the LPRI NTER
object itself, whereasnr ead is set equal toO_LPR_READ - as can be seen in the above code from
Iprinter_lpr_init.

Whenever PAGES has an event to report to the user, it sendshdone anndone message. These events
include: the end of apage, the end of a printing session, and an error condition. In fact, when printing is
started by LPRI NTER, hdone is set, in due course, to the handle of the PRI NTI NG dialog, and ndone is set
equal to O_PRI NTI NG_PRI NTI NG. For interest, part of the code of the HWIM PRI NTI NG class follows:

LOCAL_C Ul NT Get Fi rstPageToPrint (VO D)

return(((PR_PRINTER *) (w_ws->wserv.printer))->printer.p.p.pgbeg);

LOCAL_C VO D Set PageNunDi spl ay(I NT num I NT resid)

{
TEXT buf[40];

hAt os(&uf [0], resid, num;
hDI gSet Text (1, &uf[0]);

LOCAL_C VO D Set PageNunDi spl ayCheck(PR_PRI NTI NG *sel f, | NT num
{
Set PageNunDi spl ay(num (sel f->win.flags&R W N W LL_SKI P &&
Get Fi rst PageToPrint ()>num ? -SYS_SKI PPI NG_PAGE: -SYS PAGE | S);

}
#i fdef JPIC
#pragma METHOD_CALL
#endi f

METHOD VOI D printing_printing_done(PR_PRINTING *sel f, PAGES_DONE *d)
switch (d->event)

case PAGES_DONE_PAGE:
Set PageNunDi spl ayCheck(sel f, d- >page) ;
br eak;
case PAGES_DONE_ERROR:
case PAGES_DONE_END:
sel f->printing. pages=NULL;
p_send2(sel f, O_DESTROY) ;
br eak;

}
}

Note that, after sendinghdone a PAGES_DONE_END Or PAGES_DONE_ERROR event, PAGES destroys itself.
Thisisthe reason why the above PRI NTI NG code nullsits copy of the handle of PAGES (otherwise, the
dest r oy method of PRI NTI NG would attempt to destroy PAGES a second time, in the standard procedure of
automatic destruction of component objects). Finally notethat adest r oy message can also be sent to

PRI NTI NG as aresult of the user pressing the ESC key - this happens automatically on account of standard
DLGBOX level code; in this case, itis appropriate for PAGES to be destroyed as a consequence of PRI NTI NG
being destroyed; thisis how printing terminates in response to the user's “ Abandon” request.

More about the interface to and from PAGES

Two cases where application code might send messages directly to PAGES are asfollows:

13-21

OBJECT ORIENTED PROGRAMMING GUIDE

if the application makes use of the flag\WDR_PRI NT_I DLE when it prints- in which case, as
explained earlier in this chapter, it needs to send the PAGES object anao_queue when it has
determined what the next print element is

if the application needsto destroy the PAGES abject (but thiswill only arise if the application takes
over the code that is, by default, handled by the dest r oy method of the PRI NTI NG class).

In most cases, however, application code will never have any reason to send a message directly to the
PAGES object. Instead, the parts of the interface to and from PAGES that are more likely to need to be
understood are:

how to create and initialise the PAGES object
the nature of the nr ead and the ndone callbacksfrom PAGES.

A PAGES object is actually created by sending a message to the PRI NTER object. Therearein fact three
very similar methods, al of which create and initialise PAGES in one way or another:

the pr _pri nt method creates and initialisesPAGES in printing mode
the pr _pagi nat e method creates and initialisesPAGES in paginating mode
the pr _pr evi ew method (Series 3a only) creates and initialisesSPAGES in print preview mode.

In each case, there is one additional parameter - the address of a PAGES_CALLS struct, as described earlier.
In each case, the method returns the handle of the PAGES object created.

Thus code called frominsidethedl _dyn_i ni t method of the HWIM PRI NTI NG class (which isitself called
from codeinsidethel pr _i ni t method of the LPRI NTER class) contains the following:

METHOD VO D *printing_printing_do_print(PR_PRINTING *sel f, PAGES _CALLS *pcalls)

{
return((VO D *)p_send3(w_ws->wserv. printer, O PR PRINT, pcalls))
}

METHOD VO D printing_dl _dyn_init(PR_PRINTING *sel f)

{
RBUF_PRI NTI NG *r buf ;

rbuf =sel f - >dl gbox. r buf;

rbuf->calls. hdone=sel f;

rbuf ->cal I s. mdone=0_PRI NTI NG_DONE

sel f->printing. pages=(VO D *)p_send3(sel f, O PRI NTI NG_DO_PRI NT, &r buf -
>cal | s);

i f (rbuf->ppages)

*r buf - >ppages=sel f->printing. pages
}

Note that the paginating mode of PAGES is provided specially for use by window objects based on the
FORM SCRLAY and SCRI MG classes - such as the main windows of the Word Processor and Database
applications. The fact that the pagination logic is so similar to printing logic needn't particularly concern
most users of PAGES. The only potentially significant point concerns the parameters passed back to each
nr ead callback. Ascan be seen from thelisting given abovefor thel pr _r ead method of LPRI NTER, a
somewhat mysterious second parameter (calledx inthat listing) is passed. The actual significance of thisis
in whether or not PAGES is being run in paginating mode. V arious optimisations can be made in this case
within SCRLAY callback code. (To be completely accurate, the callback in this caseisto the PRNLAY
subclass of SCRLAY.) However, asisclear, this parameter istotally ignored when the callback is made,
instead, to LPRI NTER code.

A brief description of the WDR class

The VDR class shares with PAGES the feature of lying at the heart of the WDR printing subsystem. Whilst
PAGES isthe active object class that actually drives page formatting and printing, WDR supports various
guery functions concerning the current printer model. For example, thewdr _get _wi dt h_t abl e method
has already been mentioned.

Another useful service of the WDR classisthat of converting a null-terminated sequence of UWORD values
from twips into current printer units. The method involved hereiswdr _t wi ps_t o_xy. Anexample of the
use of this method isin the ReadWir Dat a function already mentioned:

13-22

13 PRINTING

LOCAL_C VO D ReadWdr Dat a(PR_LPRI NTER *sel f)

{
UWORD *I x[2] ;
UWORD *|y[2];

self->lprinter.| height=self->lprinter.f.height;
| y[O] =&sel f->l printer.| height;

|'y[1] =NULL;
| x[0] =&sel f->l printer.w dth;
I x[1] =NULL;

sel f->lprinter.wdr=((PR_PACES *)sel f->| printer.pages)->pages.in.wdr;
p_send4(self->lprinter.wdr, O WDR TW PS_TO XY, & x[0], & y[0]);
sel f->l printer.wtab=(UBYTE *)p_send5(sel f->| printer.wdr,
O WDR_GET_W DTH_TABLE, sel f->l printer.f.fid,
self->lprinter.f.height,self->lprinter.f.style);

}

In order to find out the number of typefaces supported by the current printer model, code such as the

following can be used:
nt =((WDR_MODEL *) p_send2(wdr, O WDR_SENSE_MODEL)) - >num_t ypef aces;

where the definition of the WbR_MODEL struct is (refer also to the the WDR Printing chapter in the
Additional System Information manual)

typedef struct

UWORD mi nx; m nimum delta x (in tw ps, unless MNX_|S DPI
flag set)

UWORD mi ny; mnimumdelta y in tw ps

UWORD ski px; anount printer auto indents

UWORD ski py; amount printer auto feeds

UWORD f | ags; orientation

UWORD num t ypef aces; nunmber of typefaces supported by nodel

WDR_TYPEFACE *typeface[1l]; list of typeface rids/pointers to typeface

} WDR_MODEL;

For any given typeface, referred to by index number (0, 1, ...), the corresponding name and typeface number,
among other things, can be found out by sending the WDR object awdr _t ypef ace message, which takes

the index number as a parameter, and which returns a pointer to awdr _t ypef ace struct:

typedef struct

{

TEXT name[WDR_FONT_NAME_LEN] ; Typeface nane

UWORD t ypef ace; RTF/ Word conpati bl e typeface

UWORD t ype; WDR_TYPF_XXX

WORD trans_rid; rid of translates record

UWORD num_hei ght s; Number of different typeface heights
WDR_FONT font[1]; List of different heights

} WDR_TYPEFACE;

Another approach to finding atypeface with a given typeface number is to send the WDR object a
wdr _sear ch_t ypef ace message, which has the following definition:

METHOD | NT wdr _wdr _search_typeface(PR_WDR *sel f, | NT typf, WORD

*pi x, WDR_TYPEFACE **ppt)

/*

Wite the index and address of the typeface struct with RTF/ Word
typeface nunber typf to *pix and *ppt respectively and return TRUE

if a matching typeface was found.

Ot herwi se return FALSE and wite a recommended typeface

or -1 if no such typeface nunber exists in the current nodel.

Either pix or pt may be NULL if that part of the return is not required.
*/

Aswill be appreciated, this method contains the “font mapping/ substitution” logic of the WDR class.

Finally, for agiven typeface, the way to determine the range of heights available (and also the recommended
way of matching adesired font height) can be seen from the following code - which is actually an extract

from the standard Hwim “Font selector” dialog code:

13-23

OBJECT ORIENTED PROGRAMMING GUIDE

LOCAL_C VOI D Reset Si zes(PR_FONTSEL *sel f, | NT typfix)

{

UWORD n, i ;
WORD hei ght ;
TEXT buf[12];

p_send2(sel f->fontsel.sizes, O VA _RESET);

n=((WDR_TYPEFACE *)p_send3(sel f->fontsel.wdr, O WDR_TYPEFACE, t ypfi x)) -
>num_hei ght s;

for (i=0;i<n;i++)

{
buf [p_i tob(&uf[0], p_send4(sel f-

>f ont sel . wdr, O_ WDR_FONT_HEI CGHT, typfi x,i)/20)]=0;
p_send3(sel f->fontsel.sizes, O VA APPEND, &uf[0]);

hei ght =sel f - >f ont sel . pf - >hei ght ;
hDI gSet Chl i st (2, p_send4(sel f-
>f ont sel . wdr, O WDR_SEARCH_HEI GHT, t ypfi x, &ei ght));

}

(Notethat the values returned by thewdr _f ont _hei ght method are intwips. hence the multiplication by
20, to convert into points prior to presenting the valuesin adialogfor inspection by users.)

Creating and destroying WDR objects

Evidently, LPRI NTER code - and any other WDR printing code - relies on a suitable WDR object having been
created and initialised. The PAGES classin particular contains a property field given the handle of aWbR
object, and theao_i ni t method of PAGES requiresto be passed this handle as part of itsinitialisation data.

Thereisalso aslot for the handle of a WDR object within PRI NTER property. For thisreason, PRI NTER code
calledinsidethepr _pri nt method (also called by thepr _pagi nat e and pr _pr evi ew methods) contains
the following lines:

if (!self->printer.wdr)
p_send2(sel f, O PR_OPEN_VDR) ;

Thepr _open_wdr method of PRI NTER is as follows:
METHOD PR_WDR *printer_pr_open_wdr (PR_PRI NTER *sel f)

{
I NT nodel ;
TEXT nane[P_FNAMESI ZE] ;

nodel =p_send3(sel f, O PR_SENSE_MODEL, &ane[0]) ;

printer_pr_close_wdr(self);

sel f->printer.wdr=f_newsend(CAT_FORM_FORM C_WDR, O WDR_I NI T, &ane[0] , model)
return(sel f->printer.wdr);

}

Inturn, thepr _sense_nodel method obtains the appropriate printer model

by preference, from data set in PRI NTER property by aprior call topr _set _nodel (seetheend of
this chapter for an example of code sending apr _set _nodel message)

otherwise, from the P$Mprint model environment variable
failing that, from the hard-wired default of ROM : BJ. DR.

Note that this mechanism leaves open the possibility of the application creating and initialising a WDR object,
for its own purposes, well before the user selects any print menu command. Evidently, the way to do thisis
to

ensure that the PRI NTER object (handle atw_ws- >wser v. pri nt er) has been created and
initialised
send thisobject apr _open_wdr message.

Incidentally, it is perfectly possible for there to be more than one VDR object in existence, at the sametimein

the same application (although only one of them can have its handle written into PRI NTER property). Thus
when dialogsinside the HWIM “Print setup” dialog suite are operational, a“scratch” WDR is used at various

13-24

13 PRINTING

times, in order to enquire details of .wdr printer model files other than the one to which the application is
currently “logged”.

On the other hand, WDR objects should be destroyed as soon as they are no longer required. (For example, a
considerable amount of memory may betied up by al the font width tables that may have been loaded.)

To achieve this, simply send PRI NTERapr _cl ose_wdr message. Thusthedest r oy method of LPRI NTER
isasfollows:

METHOD VOI D | printer_destroy(PR_LPRI NTER *sel f)
{

if (w_ws->wserv.printer)

p_send2(w_ws->wserv. printer, O PR _ CLOSE VDR) ;
p_supersend2(sel f, O DESTROY) ;
}

(Notethat the test of whether w_ws- >wser v. pri nt er isnon-null is necessary becausethe! pr _i ni t
method of LPRI NTER could fail prior to the completion of the call tows_ens_pri nt _cont ext .)

Inturn, thecodeinthepr _cl ose_wdr method of PRI NTERIs, naturally enough,
GLDEF_C VO D DestroyRef (PR_ROOT **ref)

{

if (*ref)
{
p_send2(*ref, O DESTROY)
*ref =NULL;
}

}

METHOD VOI D printer_pr_close_wdr (PR_PRI NTER *sel f)

DestroyRef (&sel f->printer.wdr);

Using XPRINTER for print preview

Just asthere are various level s at which the subject of printing can be approached, so also are there various
levels at which the subject of print preview can be approached. However,

like printing, the requirements of most applications for print previewing can be met very simply, by
means of creating and using a subclass of LPRI NTER - except that this time a subclass of
XPRI NTER isrequired (XPRI NTER itself being a subclass of LPRI NTER)

in these cases, what makes application coding particularly easy isthe fact that exactly the same
subclass will suffice both for printing purposes and for print preview purposes

underlying this similarity isthe fact that printing and print previewing are both driven by the PAGES
active object, which requiresin both casesto be fed by application code with a series of print
elements (the same set of print elementsin both cases).

The difference between XPRINTER and LPRINTER

First, note that XPRI NTER is defined in the XADD library, which is not present in the ROM of the Series 3,
so that print preview support does not exist on the Series 3 - only on the Series 3a. (Further to this, the
versions of LPRI NTER on the Series 3 and the Series 3aare also critically different, in afew small but key
places - though the calling interface remains exactly the same.)

Next, witness the entirety of the code of XPRI NTER:
#i ncl ude <xprinter.g>
#i ncl ude <prev.g>

#i ncl ude <xadd. g>

GLREF_D PR_APPMAN *w_am
GLREF_D VO D *w_ws;

13-25

OBJECT ORIENTED PROGRAMMING GUIDE

#i fdef JPIC
#pragma METHOD_CALL
#endi f

METHOD VO D xprinter_destroy(PR_XPRI NTER *sel f)

if (self->xprinter.|ocked)
p_send3(w_ws, O Ws_LOCK, FALSE) ;

p_supersend2(sel f, O DESTROY) ;

}

METHOD VOI D xprinter_Ilpr_init(PR_XPRINTER *sel f, | NT conm d)

if (!commid)

p_send3(w_ws, O W§_LOCK, TRUE) ;
sel f->xprinter.| ocked=TRUE;

sel f->l printer.subsqi nd=conm d; /* communi cate with subclass */
p_supersend2(sel f, O LPR_INIT);
if (!conm d)
return;
f _newsend(CAT_XADD_XADD, C_PRWVI EW O PVW_I NI T, sel f, conm d, &sel f -

>| printer. pages);

and the entirety of the corresponding class definition:

CLASS xprinter |printer

{
REPLACE destroy
REPLACE | pr_init

PROPERTY
{
WORD | ocked;
}

}

Evidently, XPRI NTER adds two pieces of functionality to LPRI NTER (one rather trivial, and the other more
fundamental):

XPRI NTER locks the application whilst it is printing, to |essen the chance of “accidents’ half-way
through printing due to the user inadvertently switching files from the System screen (setting the
application locked means the System screen will block any attempted file switch witha“XXX is
busy” infoprint)

XPRI NTER expects an extra parameter to itsLPR_I NI T method; if the value of thisis zero,
LPRI NTER code isinvoked in printing mode, whereasif it is non-zero, print preview takes place
instead.

The actual meaning of this additional parameter - conmi d - is the method number of the command manager
that system code will invoke if the user choosesthe ‘ Print’ menu command from within the menubar
availableinside print preview.

Extended example of print and print preview using XPRINTER

Toillustrate use of XPRI NTER for print and print preview purposes, consider the following variation upon
the exampl e applications presented earlier:

once again, the user is given the choice of specifying arange of datesto be printed
the dates will be printed in two columns (as in the second of the two earlier examples)

the first column will be printed in bold (by way of illustrating some features described in the middle
portion of this chapter)

rather than a series of dialogs following each other irrevocably, the various possible choicesin the
application are available, in more standard style, as choices from the menu bar

there are four menu commands available: Exit, Print setup, Print preview, and Print

13-26

13 PRINTING

in order to illustrate another (quite separate) point, the application also attemptsto load and save
its current print setup to file, on startup and on exit (though discussion of this particular feature of
the application is deferred until the end of the chapter).

On installation of the OOP component of the SDK, the source code for this application is copied into a
\sibosdk\wdrprint directory.

The category file
| MAGE denmo

EXTERNAL olib
EXTERNAL hwi m
EXTERNAL xadd

I NCLUDE hwi nman. g
| NCLUDE dI gbox. g

| NCLUDE xprinter.g
I NCLUDE tine.g

| NCLUDE epoc. h

CLASS dewserv wserv

{
REPLACE ws_dyn_init
}

CLASS decomman conman

{

REPLACE com init

REPLACE com exit

ADD dec_pset up

ADD dec_previ ew

ADD dec_print=deconman_dec_previ ew
ADD dec_print_direct

TYPES
{
typedef struct
{
UWORD dayno
UWORD ndays
UWORD gap;
} DE_PRI NT_DETAI LS
}
PROPERTY

{
DE_PRI NT_DETAI LS dets

}
}

CLASS dedl g dl gbox

{

REPLACE dI _dyn_init
REPLACE dl _key

}

13-27

OBJECT ORIENTED PROGRAMMING GUIDE

CLASS del p xprinter

REPLACE | pr_sense_t ext
CONSTANTS

{
DELP_STATE_COL1
DELP_STATE_COL2
DELP_STATE_COL3
}

PROPERTY 1
{
VO D *tine;
VO D *wt ab;
UWORD col wi d;
UWORD ri ght;
UWORD st at e;
UWORD ndays;
TEXT dname[E_MAX_DAY_NAME] ;
TEXT buf[LN_TI ME_DATE_STR];
}

NP~ O

}

Command manager

The four commands in the menu bar - Exit, Print setup, Print preview, and Print - are handled by the
command manager methodscom exi t ,dec_pset up,dec_previ ew, anddec_pri nt. Notethat the
definition

ADD dec_print=deconman_dec_previ ew

means that the single routine decomman_dec_pr evi ew handles both the menu commands Print and Print
preview. Thisisacommon feature of applications supporting print preview aswell as print. Asinall cases
of this sort, the code can distinguish which of the two menu commands has actually been chosen by testing
the value of the additional conmi d parameter that is always passed, by system code, to command manager
methods. Thusthe codefor deconman_dec_previ ewis

METHOD VO D deconman_dec_previ ew(PR_DECOMVAN *sel f, | NT conm d)

{

i f (LaunchDi al og(C _DEDLG, DELP_DLG, & onmi d))
Print Or Previ ew(comi d) ;

}

where LaunchDi al og isthe same asin previous examples (it is an entirely standard dialog-launching
utility), and Pri nt Or Pr evi ewisasfollows:

LOCAL_C VO D PrintOrPreview(|NT conm d)

{
comni d=(commi d==0_DEC_PREVI EW? O DEC_PRI NT_DI RECT: 0);
hDestroy(f_newsend(CAT_DEMO DEMO, C_DELP, O LPR_INI T, conm d));

As can be seen, the parameter passed to thel pr _i ni t method of DELP is either
0, inthe case whenDELP isto print, or

O_DEC_PRI NT_DI RECT, in the case when DELP isto print preview.

Notethat thedec_pri nt _di rect method of the command manager isnot directly associated with the Print
menu command from the base state of the application. On the contrary, as already stated, this menu
command has corresponding command manager methoddec_pri nt , which is handled by the same code as
thedec_previ ewmethod. Therole of thedec_pri nt _di rect method isto service the Print menu
command from the special Print Preview submenu that is available inside the print preview subsystem:

13-28

13 PRINTING

N [Wdrprint

Hello
Show margins u lJorld
Pages to display

Jump to page
Exit preview

. -

The code for thedec_pri nt _di rect method, inthisexample, isjust

METHOD VO D deconman_dec_print _direct (VO D)

{
Print Or Previ ew(O DEC PRI NT) ;

}

Note: the reason for using the term “direct” isthat printing is to proceed directly, without any additional
‘Print details’ dialog being presented first. The print details are the same asin the dialog that invoked the
print preview.

Apart from the methods of the command manager already covered above, DECOMVAN also has the following
methods:

thedec_pset up method just hasoneline, sendingaws_edit _print_cont ext messagetow ws

thecom i ni t method writes the handle of the command manager into Dat App2 (for convenience
elsewherein the code) and also callsthe routine Tr yLoadPr i nt Cont ext

thecom exi t method isasfollows:

METHOD VOl D decomman_com exit (PR_DECOMMAN *sel f)
{
if (p_enterl(SavePrintContext))
p_del et e(SAVED_FI LE_NAME) ;
p_exit(0);
}

More details of the SavePri nt Cont ext and TryLoadPri nt Cont ext methods are given nearer the end of
this chapter.

Print details dialog
The code here contains two enhancements compared to the earlier example:

if thedialog isvisited more than once, it isseeded, inthedl _dyn_i ni t method, with the values
last set by the user (as sensed in the precedingdl _key method)

thedialog title hasto vary, to reflect whether Print preview isto follow, or Print.
Theentire code in the dialog module for the applicationis
#i ncl ude <deno. g>
#i ncl ude <deno.rsg>

#i ncl ude <hwi m h>

GLREF_D PR_DECOMVAN * Dat App2;

13-29

OBJECT ORIENTED PROGRAMMING GUIDE

#pragma METHOD_CALL

METHOD VOI D dedl g_dl _dyn_init(PR_DLGBOX *sel f)
{

I NT commi d;

comm d=(* (I NT *)sel f->dl gbox.rbuf);
i f (comm d==0_DEC_PREVI EW

hDl gSet Ti t | eByRi d(DELP_PREVI EW TI TLE) ;
i f (!Dat App2->decomman. dets. dayno)

return;
hDIl gSet Dt edi t (1, Dat App2- >decomman. det s. dayno) ;
hDl gSet Ncedi t (2, Dat App2- >decomman. det s. ndays) ;
hDI gSet Chl i st (3, Dat App2- >deconman. det s. gap) ;

}

METHOD | NT dedl g_dl _key(PR DLGBOX *sel f)

{
Dat App2- >deconman. det s. dayno=hDl gSenseDt edi t (1) ;

Dat App2- >decomman. det s. ndays=hDl gSenseNcedi t (2);
Dat App2- >deconman. det s. gap=hDl gSenseChl i st (3);
return(WN_KEY_CHANGED) ;

}

Note that the actual DE_PRI NT_DETAI LS data structure edited in this dialog no longer exists purely on the
stack (asit did in versionsof this example discussed earlier in this chapter). Instead, to givethisdata
greater persistence, it now exists within the property of the command manager - whose handle has been
written to Dat App2 for convenience. (Otherwise, this handle could be obtained from w_ws- >wser v. com)

Theway thedl _dyn_i ni t routine determines whether the dialog has been invoked before - ie determines
whether thereis datain the DE_PRI NT_DETAI LS struct that ought to overwrite the defaults provided by the
resource controlsfor the dialog - is by testing the value of Dat App2- >deconman. det s. dayno, to see
whether it isnon-zero. But note that, of course, the test for whether the dialog title should be changed is
quite independent of this.

Application initialisation

Apart fromthe codeinthecom i ni t method, the other initialisation code for the applicationisinmai n
itself, and inthews_dyn_i ni t method of thewser v subclass (as can be seen, there is nothing unusual in

any of it):
GLREF_D WSBERV_SPEC *wser v_channel ;
LOCAL_C I NT St at usW ndowW dt h(VO D)
L_EXTEI\H’ ext;

wl nqui r eSt at usW ndow(- 1, &ext);
return(ext.wdth);

}
LOCAL_C VOI D I nitClient Wndow(PR_DEWSERV *sel f)

{
W W NDATA wd;
PR_WN *cliwn;

wd. extent.tl.x=wd. extent.tl.y=0;

wd. ext ent . hei ght =wserv_channel - >conn. i nf 0. pi xel s. y;

wd. ext ent. wi dt h=wserv_channel - >conn. i nf 0. pi xel s. x- St at usW ndowW dt h() ;
cliw n=f_newsend(CAT_DEMO_HW M C_BW N, O WN_CONNECT, NULL, W W N_EXTENT, &wd) ;
sel f->wserv.cli=cliwn;

cliw n->win.flags=PR_BW N_CORNER 4| PR_BW N_SHADOW 1;

p_send3(cliw n, O WN_EMPHASI SE, TRUE) ;

hinitVis(cliwn);

}

13-30

13 PRINTING

#pragma METHOD CALL
METHOD VOI D dewserv_ws_dyn_i nit (PR_DEWSERV *sel f)

wsSet Li st (W_STATUS_W NDOW_| CON, NULL, 0) ;
wSt at usW ndow(W_ STATUS_W NDOW BI G) ;
InitClientWndow(sel f);

}

GLDEF_C VOI D mai n(VOI D)

{
I N_HW MMAN app;
I N_WSERV wserv;

p_linklib(0);

app. f | ags=FLG_APPMAN_RSCFI LE| FLG_APPMAN_SRSCFI LE| FLG_APPMAN_CLEAN| FLG_APPMAN_F
ULLSCREEN,;

wserv.com cat =app. wserv_cat =p_get | i bh(CAT_DEMO_DEMO) ;

app. wserv_cl ass=C_DEWSERV;

wserv. com cl ass=C_DECOMMAN,

p_send4(p_new(CAT_DEMO HW M C_HW MMAN), O AM | NI T, &app, &wserv) ;
}

XPRINTER subclass initialisation

All theinitialisation code for the XPRI NTER subclass of the applicaiton is called inside the first
| pr_sense_t ext callback. Thisestablishes:

aTI ME object, suitably prepared (asin previous examples) to render textual versions of given
dates, and initialised with the start date from the DE_PRI NT_DETAI LS data structure

aprinter font width table (handle written towt ab) for the bold version of the default print font

the value of the col wi d property field, that givesthe overall width for the first column:

#i ncl ude <deno. g>
#incl ude <deno.rsg>
#i ncl ude <hwi m h>

GLREF_D PR_DECOMMAN * Dat App2;

#define TIME_FMI_FLAGS (PR_TI ME_MONTH_NAME| PR_TI ME_SUFFI X_NAVME)

LOCAL_C VOI D | ni t Ti meObj ect (PR _DELP *sel f)

{
P_DAYSEC ds;
SE_TI ME_FORMAT f it ;

ds. day=Dat App2- >deconman. det s. dayno;

ds. sec=0;

sel f->del p. ti me=f _new(CAT_DEMO OLI B, C_TI ME) ;

p_send4(sel f->del p.time, O TO SET, SET_TI ME_DAYSEC, &ds) ;
fnt.flags=TlI ME_FMI_FLAGS;

p_send4(sel f->del p.time, O TO SET_FORMAT, & nt, TI ME_FMI_FLAGS) ;
}

LOCAL_C Ul NT SenseBuf W dt h(PR_DELP *sel f, TEXT *pb)

{

return(p_send5(sel f->lprinter.wdr, O WODR_SENSE_W DTH, sel f -
>del p. wt ab, pb, p_sl en(pb)));

}

13-31

OBJECT ORIENTED PROGRAMMING GUIDE

LOCAL_C VOI D Fi ndW dt hFi r st Col unm(PR_DELP *sel f)

{ .

I NT i ;

TEXT buf [E_MAX_DAY_NAME] ;
UWORD wi d;

for (i=0; i<7; i++)
{
p_nnday(&uf[0],i);
wi d=SenseBuf W dt h(sel f, &uf[0]);
if (wid>self->delp.colwid)
sel f->del p. col wi d=wi d;

sel f - >del p. col wi d+=SenseBuf Wdth(self," "); /* two spaces */
if (self->delp.colw d>(3*self->lprinter.w dth/4))

{
hi nf oPr i nt (DELP_PAPER_NARROW ;
p_I eave(RUN_ACTI VE_CLEANUP_NONOTI FY) ;

}

sel f->l printer. subsqi nd=sel f->del p. col wi d;

}

LOCAL_C VO D I nitW dt hTabl e(PR_DELP *sel f)

{

sel f->del p. wtab=(VO D *)p_send5(sel f->l printer.wdr, O WDR_GET_W DTH_TABLE,
self->lprinter.f.fid,self->lprinter.f.height,
self->lprinter.f.style| WODR_STYLE_BOLD) ;

}

For more information relevant to parts of this code, see the appropriate sections earlier in this chapter.

The XPRINTER LPR_SENSE_TEXT callback

What isparticularly noteworthy about the DELP code in this application (referring in fact tothe totality of
the code in this class) isthat although there are, admittedly, differences from the DELP code given for earlier
examplesin this chapter, these differenceshave nothing to do with the extra support that this classis now
providing for Print Preview aswell as Print. These differences are purely to do with comparatively incidental
points, such as the fact that, for example, the first column is now being printed in bold.

In other words, the extra support for Print Preview is achievedwithout any change at the LPRI NTER
subclasslevel - except that the definition of the class now specifiesXPRI NTER as the superclass, instead of
just LPRI NTER. The codeitself could survive unchanged:

13-32

13 PRINTING

METHOD | NT del p_I pr_sense_text (PR_DELP *sel f, WDR_PRI NT *pr)

{
P_DATE dt;
P_DAYSEC ds;

if (!self->delp.tinme)

sel f - >del p. ndays=Dat App2- >decommman. det s. ndays;
I ni t Ti meObj ect(sel f);

I ni t Wdt hTabl e(sel f);

Fi ndW dt hFi r st Col um(sel f);

else if (!self->del p.ndays)
return(FALSE);
switch (self->del p.state++)

{
case DELP_STATE _COL1:
i f (DatApp2->decomman. dets. gap)

p_send4(sel f->del p. ti me, O TO _SENSE, SENSE_TI ME_DATE, &dt) ;
if (!dt.day)
{

pr - >down=pr - >hei ght ;

i f (DatApp2->deconmman. dets. gap==1)
pr->down>>=1;

}

}
p_send4(sel f->del p.ti me, O TO SENSE, SENSE_TI ME_DAYSEC, &ds) ;
p_nnday(&sel f - >del p. dnane[0] , P_WEEK(ds. day)) ;
sel f->del p. right =sel f->del p. col wi d- SenseBuf W dt h(sel f, &sel f-
>del p. dnane[0]) ;
pr->buf =(&sel f->del p. dnane[0]) ;
pr->styl e] =WDR_STYLE_BOLD;
br eak;
case DELP_STATE_COL2:
pr->flags&=(~(WDR_PRI NT_LI NE| WDR_PRI NT_TEXT)) ;
pr->fl ags| =WDR_PRI NT_RI GHT;
pr->right=sel f->del p.right;
return(TRUE) ;
case DELP_STATE_COL3:
p_send4(sel f->del p.ti me, O TO SENSE, SENSE_TI ME_DATESTR, &sel f -
>del p. buf[0]);
pr->buf =(&sel f->del p. buf [0]);
pr->fl ags&=(~WDR_PRI NT_LI NE) ;
pr->i ndent =sel f - >del p. col wi d;
sel f - >del p. ndays--;
p_send4(sel f->del p.time, O TO ADD DAYS, 1, 0);
sel f->del p. st at e=DELP_STATE_COL1;
}
pr->bl en=p_sl en(pr->buf);
return(TRUE) ;
}

Comments on the differences between XPRINTER and LPRINTER

One minor change that would have to be made, however, between LPRI NTER subclass code and XPRI NTER
subclass code, would be in any replacement | pr _i ni t method. Thissimply dueto the fact that the

I pr_i ni t method of XPRI NTER requires the additional conmi d parameter - to differentiate between the
case of Print Preview and the case of Print.

Note incidentally that, for compatibility reasons, this extra parameter could not be added in at the LPRI NTER
level. Thisison account of existing applications (ie pre-Series 3a applications) that interact with LPRI NTER
code without passing any parameter explicitly to thel pr _i ni t method.

The way around this constraint, in the development of the Series 3a ROM code, can be seen from the code
given earlier for thel pr _i ni t methods of both LPRI NTER and XPRI NTER:

thesubsqi nd property field isre-used as atemporary “postbox” between the two classes

after itsuse, in thisway, at the initialisation stage, its valueis set back to zero

13-33

OBJECT ORIENTED PROGRAMMING GUIDE

the rationale behind thisis that the subsqi nd field cannot be written to, by application subclass
code, until inside thefirst callback tol pr _sense_t ext (orl pr_r ead).

WDR printing miscellany

WDR printing classes pictorial overview
The following class diagram shows a possible application state before printing actually starts:

- P - P T - -

Il BT ¢

Py 7 PRINTER Aowor v woRdle

i wariables .. s Q_—_L ./J

-- T - -
- -—- - ST .

- . . - .
-- Il - - -

’

Cow_ws (user o styles + . application

interface) (f);» dialogs O, data

printsetuph o o printdetails . application
,: diangS :’ -I‘_H- dlﬂngS f‘;):[____- data

(A typical application need not, however, contain all the application-specific components shown here. For
example, applications that print will not necessarily contain “stylesdialogs’.)

The next diagram shows a possibl e situation once printing is underway (for clarity, many aspects of the
previousdiagram are omitted from this one):

13-34

13 PRINTING

_——— Eh [- -

~ physical DR FoacTvE

-f‘__ printer % :. . :

4

A PRINTING ™
(donej ¢

- [==

. print details - application

L dialogs C— data

(Nothing too significant should be read into the type or the direction of the connections shown between
different classesin these diagrams. Asthe foregoing chapter has made clear, the connections between the
actual classes are, at times, rather more complex than could be done justice in any one diagram.)

The PDR class

Therole of the PDR object is possibly worth mentioning. Thisreceivesall “printing output” from PAGES,
and directsinto towards the relevant 1O channel - beit the parallel port, the seria port, or just an opened file
(in the case of printing to file). The PDR class accesses data held by the WDR class, to let it know exactly
which escape sequences (or whatever) are required to effect various results - such as changing from one
font to another, indenting by a given amount, and so on.

For some kinds of printers, the PDR object has to be an instance of an appropriate subclass of the PDR class
in FORM - rather than just being an instance of PDR itself. This happens when an appropriate flagissetin
the .wdr file for that printer. Inthiscase, system code looksfor a suitably named DY L in the same directory
asthe .wdr file. Seethe WDR Printing chapter in the Additional System Information manual for some more
details, or contact Psion directly for more information about writing PDR subcl asses.

Therole of the PDR object in the above diagramsis of interest for one additional reason: when the WDR
print system isdrivenin preview mode, as opposed to printing mode, thisis one of only two parts of the
diagram to change. Rather than create any instance of PDR (or a printer-specific subclass thereof), system
codein this case creates an instance of the FORM classPRVPDR. Rather than direct printing output towards
any |0 channel, thisdirectsit towards a suitable window - the print preview window.

The other part of the diagram that changesisthe PRI NTI NG part: the PAGES ndone callback is directed to a
different object, namely an instance of PRvvI EW Thisis discussed briefly in the following section.

Print preview without XPRINTER

The code given earlier in this chapter for XPRI NTER makes it clear what would be required should an
application, for whatever reason, wish to access the print preview subsystem without using XPRI NTER.
Essentially, something equivalent to the following line of codeisrequired:

f _newsend(CAT_XADD_XADD, C_PRVVI EW O PVV_I NI T, sel f, comm d, &sel f -
>| printer. pages);

This creates and initialises an instance of the XADD classPRVVI EW

13-35

OBJECT ORIENTED PROGRAMMING GUIDE

Thecodeinthepvv_i ni t method of PRvVI Ewis as follows:

METHOD VO D prvvi ew_pvv_init(PR_PRWIEW *sel f, VO D *xp, | NT conm d, VO D
**ppages)

{
I N_PRWI EWinit;

nit.Calls.hread=xp; /[* xprinter */
nit.Calls.nread=0_LPR_READ;
nit.Calls.hdone=self;
nit.Calls.nmone=0O_PVV_FALSE;
nit.PrintMethod=comm d;

nit.Sparel = init.Spare2 = 0;
p_send4(self, O WN_INIT, & nit, FALSE);
*ppages=sel f - >prvvi ew. pPages;

sel f->prvvi ew. St art ed=TRUE;
p_send2(w_am O _AM START) ;

}

Applications may wish to avoid calling this method, but they cannot practically avoid sending the PRvVI EwW
object thewn_i ni t message. Notein thiscontext the definition of thel N_PRvVI Ewstruct:

typedef struct

{
PAGES_CALLS Cal | s;

WORD Print Met hod;
WWORD Spar el;
WORD Spar e2;

} I N_PRWI EW
where Spar el and Spar e2 should be set to zero.

The default ndone callback method, pvv_f al se, always just returnsFALSE, and will be suitable for almost
every client of PRI EW (Without going into too many details, there are in fact two layers of done
callbacks when print preview applies: afirst level callback from PAGES to PRvVI EW always using the method
pvv_pages_done, and apossible second level callback from PRvvI Ewto any specified recipient object.)

Finally, the significance of the final TRUE/FAL SE parameter to thewn_i ni t method of PRvVI Ewcan be seen
in the following code at the very end of thiswn_i ni t method:

if (DoAnStart)

sel f->prvview. Started = TRUE;
p_send2(w_am O _AM START) ;

The only reason that the codeinpvv_i ni t cannot pass the DoAnsSt art parameter asTRUE isin order to
write back the handle of PAGES (effectively inLPRI NTER property), prior to the call toam st art being
made. Thisallowscodein, for example, | pr _r ead callbacks (which take place, of course, before the

am st art call returns) to accessPAGES as required.

Saving and restoring print context from file

Asmentioned earlier, the PRI NTER class has methods allowing the print context (the subject matter of the
‘Print setup’ dialog suite) to be set and sensed. These methods can be utilised to allow the print context to
be saved to file, if desired, and then restored the next time the file is opened.

Any application that wishes to save the print context to file has to answer a number of design decisions:
what actual format should the data be stored in?

what kind of integrity check might be performed on file data, before setting it into PRI NTER
property on application startup?

what kind of error recovery procedure should be adopted, if there is any run-time error, either on
saving the data, or on loading it?

Thisis not the place to discuss these matters at any length. Accordingly, many aspects of the example
code, in the WDRPRINT subdirectory, will just be taken for granted in this discussion (though thisis not to
imply that there is anything special about the design decisions embodied therein).

13-36

13 PRINTING

What can be briefly covered here, however, are various methods of PRI NTER, which fall into two categories:
those sensing the print context, and those setting it.

The following code senses the print context and writes it out to file:

LOCAL_C I NT SavePri nt Cont ext (VO D)

{

VO D *fcb;
VOI D *printer;
UBYTE *p;
struct

{

UBYTE nodel ;

UBYTE name[P_FNAMESI ZE+1] ;
}om

printer=w_ws->wserv.printer;
if (!printer)
return(0);
f _open(&f cb, SAVED_FI LE_NAME, P_FREPLACE| P_FSTREAM P_FUPDATE) ;
p=(UBYTE *)p_send2(printer, O PR _GET_PARAMS) ;
f_write(fch, p, sizeof (PRI NTER_PARAMS)) ;
m nodel =p_send3(printer, O PR_SENSE_MODEL, &n nanme[0]) ;
f_write(fcb, &n nodel , 1+p_sl en(&m nanme[0]) +1) ;
p=(UBYTE *)p_send3(printer, O PR_GET_HD, PRI NTER_HDR_TOP) ;
f_write(fch,p,p_slen(p)+1);
p=(UBYTE *)p_send3(printer, O PR _GET_HD, PRI NTER_HDR BOT) ;
f_wite(fchb,p, p_slen(p)+1);
p_cl ose(fch);
return(0);
}

This code uses the following PRI NTER methods:

pr_get _par ans: returnsthe address of the PRI NTER_PARAMS data structure inside PRI NTER
property

pr_sense_nodel : writesaZTS specification of the current .wdr file, and returns the index number
of the current printer model within thisfile

pr_get _hd: returnsthe address of aZTS giving either the header text or the footer text, depending
on thefinal parameter passed.

Note that aspects of for example the alignment and the printer font of the header and footer are stored as
parts of the fixed-length PRI NTER_PARAMS struct: it isonly the (variable length) text of the header and
footer that requires a separate method to senseit.

The code to read the print context from file, and to set it into PRI NTER property, is rather longer - but that is
only because of theintegrity teststhat it makes:

13-37

OBJECT ORIENTED PROGRAMMING GUIDE

LOCAL_C VOI D TryLoadPri nt Cont ext (VO D)

{

P_I NFO j unk;

VO D *fcbh;

VO D *printer;

UBYTE buf[512];

I NT bl en;

I NT i nd;

UBYTE *p1l, *p2, *p3, *p4;

if (p_finfo(SAVED FI LE_NAME, & unk))
return; /* eg file does not exist */
f _open(&f cb, SAVED_FI LE_NAME, P_FOPEN| P_FSTREAM P_FSHARE) ;
bl en=f _read(fcbh, &uf[0],512);
p_cl ose(fch);
i f (bl en<=si zeof (PRI NTER_PARAMS) +2)
goto file_corrupt;
pl=(&buf[0]);
bl en- =si zeof (PRI NTER_PARAMS) ;
p2=pl+si zeof (PRI NTER_PARAMS) ;
i nd=p_bl oc(p2+1, bl en-1, 0);
i f (ind<0)
goto file_corrupt;
p3=p2+1+i nd+1;
bl en-=1+i nd+1;
i f (bl en<=0)
goto file_corrupt;
i nd=p_bl oc(p3, bl en, 0);
i f (ind<0)
goto file_corrupt;
p4=p3+i nd+1;
bl en- =i nd+1;
if (blen<=0)
goto file_corrupt;
i nd=p_bl oc(p4, bl en, 0);
if (ind!=blen-1)

file_corrupt:
hl nf oPri nt (DELETI NG_CORRUPT_FI LE) ;
p_del et e(SAVED_FI LE_NAME) ;
return;

}
p_send2(w_ws, O WS_ENS_PRI NT_CONTEXT) ;
printer=w_ws->wserv. printer;
p_bcpy((VO D

*)p_send2(printer, O PR GET_PARAMS), pl, si zeof (PRI NTER_PARAMS)) ;

p_send5(printer, O PR _SET_MODEL, FALSE, p2+1, *p2);
p_send4(printer, O PR_SET_HD, PRI NTER_HDR_TOP, p3) ;
p_send4(printer, O PR _SET_HD, PRI NTER_HDR_BOT, p4) ;
}

The two new PRI NTER methods used here are:

pr_set _nodel : thefirst parameter isapointer to aZTS giving the .wdr filename, and the second is
the printer model index number

pr_set _hd: thefirst parameter specifies whether the header text or the footer text is being set, and
the second givesaZTS containing this text.

13-38

CHAPTER 14

LINK PASTE

This chapter contains a practical introduction to programming “Link Paste” (also called “Bring”):
how to service link paste requests from other applications (the server side of link paste)
how to obtain link paste data from other applications (the client side of link paste)
therole of the OLIB classesL| NKSV, LI NKCL, and SYSTEM
the definitions of variouslink data“types’
specific HWIM assistance for link paste involving edit windows.

For the sake of concreteness, the discussionsin this chapter are mainly based around various modifications
and extensions of the Ehello example application that features in the opening sections of the Edit Windows
chapter, and which is optionally installed into the \sibosdk\ehello directory. It should be stressed, however,
that it is possible to grasp the conceptsinvolved in programming link paste independently of any
appreciation of programming edit windows.

The modifications required to the original Ehello code, to add link paste functionality, are all given below.

The server side of link paste

When the user selects the ‘Bring’ menu command in application X, say, and sees new data added to
application X, this data has come from another application- Y, say - that was in background at the time the
menu command was issued. Inthisexample, application X isthe “link client” and application Y isthe “link
server”.

It isimportant to realise that the datais fetched directly from application Y at thetimethe ‘Bring’ request is
issued. That is, the dataisnot fetched into any independent “clipboard application” at any earlier stage (eg
when application Y wasin foreground). Thereisno “clipboard application” in the Epoc architecture (neither
at the OSlevel nor at the HWIM level - nor at any intermediate level).

Thus applications which wish to function as link servers have to be prepared to receive requests for data
whilst they are in background. These requests are in fact interprocess communication (1PC) messages of a
particular type - but thisislargely hidden from HWIM applications, with the details of the |PC being
handled, on the server side, by the OLIB LI NKSV class.

Creating a LINKSV subclass instance

The LI NKSV class contains two deferred methods, | s_set _format andl s_get _dat a, that haveto be
supplied by any link-serving application. For this reason, applications never create an instance of LI NKSV
itself, but rather an instance of an application-specific subclass of I i nksv.

For example, the following additional class definition could be added into the file ehello.cat (seelater for the
significance of the property fields)

14-1

OBJECT ORIENTED PROGRAMMING GUIDE

I NCLUDE i pc.g

CLASS ehlinksv |inksv

{
REPLACE | s_set _format
REPLACE | s_get _data

PROPERTY
{
WORD sel | en
TEXT *pbuf;

}
}

and the following line of code should be added to application start-up code, eg inthews_dyn_i ni t method
of the WSERV subclass (in other applications, the code could be placed instead inthe com i ni t method of
the COMMVAN subclass - depending on what was most convenient):

f _newsend(CAT_EHELLO EHELLO, C_EHLI NKSV, O_SV_I NI T);

Note that thereisrarely any need to record the handle of the created L1 NKSV subclass instance anywherein
application code:

the object will continue in existence throughout the lifetime of the application, and so there isno
need to hold onto its handlejust in order to send it adest r oy message at some later stage

the handle of the objectisin fact recorded in the linked-list of so-called “server handles’ held by
the system | PCS object, and whenever a suitable | PC message is received by the application, the
I PCS object automatically redirectsit to the L1 NKSV object.

Note also that any sv_i ni t cal will fail - with panic 55 - unless the flag FLG_APPMAN_I PCS is set inmai n
(infact, thisflag is effectively always set for HWIM applications on the Series 3a- but it is good practice to
set it explicitly, inmai n, whenever an application creates a SERVER object of itsown). Thereforethelinein
ehmain.c that defines the APPMAN flags for the application becomes

app. f| ags=FLG_APPMAN_RSCFI LE| FLG_APPMAN_SRSCFI LE| FLG_APPMAN_CLEAN
| FLG_APPMAN | PCS| FLG_APPMAN_LI NKI NG;

so that w_amisinitialised with an1 PCS component (see later for the significance of the
FLG_APPMAN_LI NKI NGflag).

Note finally that it isimpossible to delay creating the L1 NKSV object until an actual link paste datarequest is
received - which might at first seem a good idea (in order to cut down on the memory overhead of an object
that might never actually be needed). The pointisthat the LI NKSV object is needed in order to receive the
request in the first place (on pain of apanic 158). However, it iscommon practice to delay the allocation of
additional databuffers (such asthe pbuf field of EHLI NKSV will point to) until actually required.

Declaring link paste server status

In order for an application to receive alink paste data request, two pre-conditions have to be satisfied:
the application has created and initialised aL1 NKSV object - as described above

the application has sent the SYSTEMcomponent of w_amansy_| i nk_ser ver message, declaring
the presence (and type) of linkable data.

Declaring current link paste server statusis done every time the application passes into background.
Therefore the application hasto subclass thews_backgr ound method of WSERV. For example, the
declaration of EHWSERV in ehello.cat becomes

CLASS ehwserv wserv
REPLACE ws_dyn_init

REPLACE ws_backgr ound
}

with the actual contents of thews_backgr ound method being:

14-2

14 LINK PASTE

GLREF_D PR_APPMAN *w_am
GLREF_D PR_EDW N *Dat App3;

METHOD VO D ehwserv_ws_backgr ound(PR_EHWSERV *sel f)

{
I NT whi ch;

if (!(self->wserv.flags&PR_WSERV_RECEI VED KEY))
return;
whi ch=0;
i f (DatApp3->edwi n. sel ect)
whi ch=1<<DF_LI NK_TEXT;
p_send4(w_am >appman. system O_SY_LI NK_SERVER, whi ch, 0) ;
}

The significance of the test onPR_WSERV_RECEI VED_FLAG in this code isto prevent the application
“stealing” the link paste server status just because the user happens to task through it. Suppose that the
user has, long ago, selected some text in application A, but now wantsto link paste some datafrom
application B to application C. The user therefore highlights the datain B, and then tasksto C. But
suppose that A istasked to foreground first - as may well happen if, in particular, A and C are instances of
the same application (eg two different Spreadsheet files). So long as the user pressed no keyswhile
transiently tasking through A (apart from the task keys themselves), the above test ensures that the
eventua ‘Bring’ menu command in C fetches datafrom B and not from A.

The bulk of the link-paste specific codein an application'sws_backgr ound method usually consists of
determining the set of link-paste “types’ that the current state of the application can support. Seelater for a
discussion of various different standard link paste types. Inthe example above, the decisionisa
straightforward choice between two possibilities. either there is some selected text in the editor - in which
case linkable data of type DF_LI NK_TEXT isavailable - or else there is not - in which case no linkable datais
available.

In general, an application will often be able to provide more than one type of dataat any giventime. For
example, an application will often be able to offer both “ plain text” and “ native format data” - depending on
who therecipient of the datais. Thusif the recipient of the datais another instance of the same application
(eg one spreadsheet link-pasting data from another), a“native format” datatransfer will generally transfer
more information that the kind of “plain text” data transfer that would happen, instead, if the recipient
application isnot the same.

For thisreason, thesy_1 i nk_ser ver method takes two parameters, which between them form a ULONG
“mask” made up of 32 bits. The more different bitsthat are set, the more different types of formats which the
link server is prepared to “render” at that moment. To signal that the link server is prepared to render format
type DF_LI NK_TEXT, the bit (1<<DF_LI NK_TEXT) should be set in the mask, and so forth.

Notethat if the application currently hasno data available for link paste, the mask value of zero should be
reported. Thiswill clear any record that may be left over from earlier, when the applicationdid have data
availablefor link paste.

In the example above, Dat App3 has been set to point, for convenience, to the EDW N object in the main
window of the application - viathe following line added toehbwi n_wn_i ni t :

GLREF_D PR_EDW N *Dat App3;

Dat App3=sel f - >ehbwi n. edwi n;

The test onDat App3- >edwi n. sel ect therefore just detects whether there is any select region in the
editor: if thereis, the application is prepared to render plain text format link paste data; otherwise, it has no
datato render.

Initialising the SYSTEM component of w_am

Before the application can send asy_| i nk_ser ver message tow_am >appman. syst em it iSnecessary to
arrange for the creation and initialisation of the SYSTEMcomponent of w_am Thisisarranged very simply:
by setting the FLG_APPMAN_LI NKI NG flag innai n.

14-3

OBJECT ORIENTED PROGRAMMING GUIDE

Note carefully that setting the FLG_APPMAN_SYSTEMflag will not have the desired effect. That would
succeed in creating and initialising an instance of the SYSTEMobject, but it would be the wrong type of
SYSTEM object - being oriented towards the process sys$shil.img instead of towards the process
syspwsrv.img (see the OLIB Reference manual for more details).

The anatomy of a link paste transaction (server-side viewpoint)

In general, alink-paste transaction is seen, at the server end, as
onecall tol s_set _format
followed by a number of calls (one or more) tol s_get _dat a.

The transaction takes place in anumber of stages, in general, since thereisalimit to the amount of data that
can reasonably be transferred in any one stage, and in order that the foreground application can remain
responsive to redraw requestsin the meanwhile. Thelink server will usually possess some “ state variables”
- generally in the property of itsLI NKSV subclass - in order to keep track of the progress of the current
transaction.

The purpose of thel s_set _f ormat cdlis
to specify which of the profferred dataformatsis actually being requested

to allow thelink server to reset its state variables, reflecting the fact that such-and-such atype of
link paste datatransfer is about to start.

The purpose of each subsequent| s_get _dat a cal is

to assemble datainto a suitable buffer (if necessary) and to set a suitable variable (namely the
I'i nksv. buf property field) to point to this buffer

to specify the length of the datato be transferred in this stage of the transaction (this should be
writtentothel i nksv. | en property field)

to indicate, by means of the return value (TRUE or FALSE) whether the transaction has completed.
Noticethat alink paste transaction can end either because:

the link server has no more data to transmit

the link client does not wish to receive any more data.

In the latter case, system code informsthe LI NKSV subclass by means of specifying anegativel en
parameter - see the example code below. (Ordinarily, this parameter gives the size of the buffer in the data
space of the recipient where the datais to be copied to.)

Note that the buffer whose addressiswritten tol i nksv. buf must not be on the stack (for obvious
reasons).

Example LINKSV code
Thecodeforthel s_set _formt andl s_get _dat a methods of the EHLI NKSV methodsis asfollows:

#i ncl ude <ehell 0. g>
#i ncl ude <p_gen. h>

GLREF_D PR_EDW N *Dat App3;
LOCAL_C VOI D Li nkServiceOver (PR_EHLI NKSV *sel f)

p_free(sel f->ehlinksv. pbuf);
sel f->ehl i nksv. pbuf =NULL
sel f->ehlinksv.sell en=0

}

#pragma METHOD_ CALL

14-4

14 LINK PASTE

METHOD VOI D ehlinksv_|s_set_format (PR_EHLI NKSV *sel f, | NT type)

{
UWORD t op;

SENSE_EDW N sense;
SE_EDW N se;

Li nkSer vi ceOver (sel f);
if (type!=DF_LI NK_TEXT)
p_l eave(E_GEN_NSUP) ;
p_send3(Dat App3, O EW SENSE, &sense) ;
if (sense.cursor<sense.anchor)

{
t op=sense. cursor;
sel f->ehlinksv. sel |l en=sense. anchor -t op;

else if (sense.cursor>sense. anchor)

{
t op=sense. anchor;
sel f->ehl i nksv. sel | en=sense. cursor-top;

}

el se
return;
sel f->ehlinksv. pbuf =f _al | oc(sel f->ehlinksv.sellen);
p_send3(Dat App3, O WN_SENSE, &se) ;
p_bcpy(sel f->ehlinksv. pbuf, se. buf +t op, sel f->ehlinksv. sellen);

}
METHOD | NT ehlinksv_Ils_get_data(PR_EHLI NKSV *sel f, | NT | en)

if (len<O || !self->ehlinksv.sellen)

{
Li nkServi ceOver (sel f);

return(FALSE);

if (len>self->ehlinksv.sellen)
| en=sel f->ehlinksv.sellen;
sel f->linksv. | en=l en;
sel f->linksv. buf =sel f->ehl i nksv. pbuf;
sel f ->ehl i nksv. sel | en=0;
return(TRUE) ;
}

Inthel s_set _f or mat method, the code somewhat kindly just callsp_| eave(E_GEN_NSUP) in any case
that the client requests data not available for rendering. Arguably, it might be more appropriate to panic the
clientin this case:

p_ppani c(sel f->server.cid, xxx);

with some well-chosen panic number xxx (since the application has at no time ever declared that it could
supply any other format of data - so there must be abug in the client program for requesting such data).

General remarks about link servers
Note that arequest for datato be rendered for link paste can be received even if

the application has one or more dialogs showing
the application has a menu showing
the application has a help screen showing.

The HWIM architecture handles this completely smoothly: the application receivesws_backgr ound,
I's_set_format,andl s_get _dat a messages completely independently of whether there are dialogs or
menus (etc) current. Thisisin contrast with the case of, for example, most Hwif or OPL/w applications,
when any link paste request | PC messages would go completely unacknowledged in such acase. (And
since thereis an assumption inL1 NKCL code that link paste request |PC messages do not remain
unacknowledged - on pain of the link client application hanging - thisis a strong reason why non-HWIM
applications should, in general, avoid declaring themselves as link paste servers.)

14-5

OBJECT ORIENTED PROGRAMMING GUIDE

Some standard link paste data formats

In most cases, applications need only consider three standard link paste data formats:
DF_LI NK_TEXT, inwhich dataistransmitted as a series of buffers of purely printable characters
DF_LI NK_TABTEXT, in which the buffers of data can contain, in addition, tab characters
DF_LI NK_PARAS, in which the buffers of data can also contain embedded paragraph delimiters.

(In addition to these standard formats, applications may also consider any number of application-specific
so-called native formats. Native formats are discussed later in this chapter.)

Now the code discussed so far may have given theimpression that aDF_LI NK_TEXT data transfer only
consists of one buffer of text. But that would be a mistaken impression. To seethis, consider the following
simple changesin the Ehello code:

declare an extra WORD property field, nt i nes, for EHLI NKSV

changetheenl i nksv_I s_get _dat a method so that thesel | en property field only gets reset to
zero after the available data has been link pasted out threetimesin all.

Thusthel s_get _dat a method becomes
METHOD | NT ehlinksv_Is_get_data(PR_EHLI NKSV *sel f, | NT | en)

if (len<O0 || !self->ehlinksv.sellen)

{
Li nkSer vi ceOver (sel f);

return(FALSE) ;

if (len>self->ehlinksv.sellen)
| en=sel f->ehl i nksv. sel |l en;
sel f->linksv.|en=len;
sel f->linksv. buf =sel f->ehl i nksv. pbuf;
if (!--(self->ehlinksv.ntines))
sel f->ehl i nksv. sel | en=0;
return(TRUE);

}
and anew line
sel f ->ehl i nksv. nti mes=3;

appears at the end of thel s_set _f or mat method. Highlighting some text in the editor and then choosing
‘Bring’ in an application such as the Word Processor or the Database now resultsin the highlighted text
being transferred three timesin al - going into three different paragraphsin the process.

Note however that some link clients- such as the Series 3a Agenda - will terminate the transaction after only
absorbing the first buffer of data. Thisis perfectly within their right (see below for the details of how to
achieve thisresult).

DF_LINK_TEXT and DF_LINK_PARAS contrasted

Next, consider another change in Ehello code, in which thelineinthews_backgr ound method now
declaresthe availahility of DF_LI NK_PARAS aswell asDF_LI NK_TEXT:

i f (DatApp3->edwi n. sel ect)
whi ch=(1<<DF_LI NK_TEXT) | (1<<DF_LI NK_PARAS) ;

At the sametime, thetest ont ype inthel s_set _f or mat method has tobeome lessrestrictive:

if (type!=DF_LI NK_TEXT && type! =DF_LI NK_PARAS)
p_l eave(E_GEN_NSUP) ;

Suppose thetextHel | o wor | d ishighlighted in Ehello and the user tasks to the Word Processor and
invokes ‘Bring’. Thetext that appearsin the Word Processor window thistimeis

Hell o worl dHell o worl dHell o world

14-6

14 LINK PASTE

iewith all three copies being added into the current paragraph, whereas before, whenDF_LI NK_TEXT was
specified, the text appearing in the Word Processor wndow would have been

Hell o world
Hell o world
Hell o worl d

with the three copies going to different paragraphs.

This experiment confirms that different link paste formats can differ not only in the contents of the buffers
transferred, but also in the inter pretation of the datain these buffers.

When DF_LI NK_PARAS applies, the link paste server agrees to include paragraph delimiters (ie character
\ 0's) in place in the text being transmitted, and the link paste client agrees not to infer any additional
paragraph breaks between separate buffers transmitted. WhenDF_LI NK_TEXT (or DF_LI NK_TABTEXT)
applies, however, the server agrees not to pass any zerosin place, and the client must infer a paragraph
break in between each pair of buffers of text.

Onelimitation of DF_LI1 NK_TEXT should now be apparent, involving the size of the buffer used to transfer
thetext. If aparagraph of text islonger than the size of this buffer, it will have to be split into two, with the
different parts being interpreted as belonging to two different paragraphs. (It ispossible to observethis
effect with the Notes example application - which only uses the DF_LI NK_TEXT format.)

Word wrap and link paste

Note that soft line breaks on the screen of the link server are generally ignored by link paste protocols.
Here, a* soft line break” isonethat is caused purely by the application of word-wrap, and which might well
fall in adifferent place were the screen window changed or the screen display font changed.

In general, word wrapin the client will produce avery different result to word wrapin the server. For this
reason, none of the standard link paste formats pay any regard to soft line breaks (this matches the fact that,
as discussed in the Edit Windows chapter, there is no representation of soft line breaksat the document
level of an EDW N object).

For example, the terminal emulation application Comms always requestsDF_LI NK_PARAS, if it isavailable,
and word-wraps the text received according to the “Bring margin” which the user can specify
independently. Note that specifying DF_LI NK_TEXT would be less satisfactory, for the reason (noted
earlier) that paragraphsin the link server would sometimes end up split in two - at an apparently random
position.

DF_LINK_TABTEXT

In someways, DF_LI NK_TABTEXT does for embedded tabs what DF_LI NK_PARAS does for embedded
paragraph delimiters:

if aclient asksfor DF_LI NK_TABTEXT, it is prepared to hunt for tabsin the passed buffers, and
interpret them as makes sense within the context of the client application

if alink server isasked for DF_LI NK_TEXT, it must ensure that tab characters are all stripped out of
thetext beforeit is transmitted.

For example, the Spreadsheet application regards embedded tabs ascolumn delimiters. Edit windows, on
the other hand, interpret embedded tabs according to the tabstops (and other relevant parameters)
applicable to that edit window at the time.

If tab characters have to be removed before transmission, it is standard simply to convert them intosingle
spaces (it makes little sense to attempt to convert them to avariable number of spaces, sincein general the
number of spacesrequired is going to depend on settingsin the client context).

The hierarchy of text types

Note that the functionality of DF_LI NK_PARAS is assumed to be a superset of that of DF_LI NK_TEXT. Any
application which can handle embedded paragraph delimitersis assumed to be able to handle embedded tab
characters.

14-7

OBJECT ORIENTED PROGRAMMING GUIDE

The client side of link paste

Just asthereisan OLIB class, L1 NKSV, which encapsulates most of the functionality of the server side of
link paste, so aso istherean OLIB class, LI NKCL, which encapsul ates most of the functionality of the client
side of link paste. Between them, these two classes protect application programmers fromneeding to worry
about the details of the |PC messaging involved in the implementation of link paste.

Determining whether there is suitable data available
When an application receives a‘Bring’ menu command, one of the first thingsit has to do isto find out

if any other application has registered data as available for link pasting
what formats that data can be rendered into.
To thisend, the SYSTEMcomponent of w_amhasto be sent ansy_| i nk_past e message, eg as follows:;

WORD | kpi d;
ULONG f nt ;

| kpi d=p_send3(w_am >appman. system O_SY_LI NK_PASTE, &f nt) ;
if (!kpid || !'(fm & (1<<DF_LINK_TEXT)))

{
hl nf oPri nt (- SYS_NOTHI NG_TO_BRI NG) ;
return,

}

The ULONG mask of available formats, if any, iswrittenintof nt , and the PID of the process which has
registered the dataiswrittento! kpi d.

Before the application can send asy_| i nk_past e messagetow_am >appman. syst em it is hecessary to
arrange for the creation and initialisation of the SYSTEMcomponent of w_am Thisisarranged very simply:
by setting the FLG_APPMAN_LI NKI NG flag inmai n.

Noteincidentally that it is perfectly possible for an application to act asalink client but not asalink server.
Such an application would haveto set FLG_APPMAN_LI NKI NG, but would not need to set
FLG_APPMAN_I PCS (unless, of course, it created other kinds of SERVER objects, ie apart from LI NKSV).

In the above code fragment, atest ismade onf nt aswell asonl kpi d. A test should always be done on
f mt , though the nature of the test made will of course depend on which kinds of link paste datathe
application is prepared to accept.

Thetext of the system message SYS_NOTHI NG_TO_ BRI NGis, in English, Nothing to bring. Applications are
free to substitute more specific messagesif they wish.

The anatomy of a link paste transaction (client-side viewpoint)

Whereas LI NKSV is designed to be subclassed - so that applications never create a direct instance of
LI NKSV - LI NKCL isuseable asit stands. For thisreasons, applications have no need to declare any
subclass of LI NKCL in their .CAT file.

Thus application link paste client code will usually contain aline such as
I'i nk=f _newsend(CAT_EHELLO OLI B, C_LI NKCL, O_LC_START, | kpi d, DF_LI NK_TEXT) ;

directly creating and initialising an instance of LI NKCL. Here, the PID of the link server is specified as one
parameter, and the required format type is specified in another. (The format specifiedin thisl c_start
message is passed through to the | s_set _f or mat method processed by thelink server.)

Note another contrast with the case of LI NKSV: theinstance of LI NKCL is only created when explicitly
needed - in responseto a‘Bring’ menu command. The handle of the instance needs to be stored

so that subsequent LC_GET_DATA messages can be sent to it, for each buffer of datato be
collected

so that an LC_STOP message can be sent to it, if required

so that the object can be destroyed at the end of the transaction.

14-8

14 LINK PASTE

In practice, once created, the LI NKCL object usually hasits handle added to the cleanup list, and the way
the object is destroyed is by a subsequent call tocl _cl ean_i tem

Simple example of use of LINKCL

Consider the following modification of Ehello: when the key combination PSION-ENTER isreceived, itis
regarded asa‘Bring’ menu instruction (recall that, for simplicity, Ehello has only the barest bones of areal
menu bar). Code gets added to ehbwin.c asfollows:

#i nclude <olib. h>
#include <s_. h>

GLREF_D PR_APPMAN *w_am
GLREF_D PR WSERV *w_ws;
GLREF_D PR_EDW N *Dat App3;

LOCAL_C VOI D DoLi nkPast e(VOI D)

{

WORD | kpi d;
ULONG fnt ;
VO D *link;

I NT cl _Iink;
TEXT buf[52];
WORD | en;

| kpi d=p_send3(w_am >appman. system O_SY_LI NK_PASTE, &f nt) ;
if (Mkpid |] !'(fm & (1<<DF_LINK_TEXT)))

{
hi nf oPri nt (- SYS_NOTHI NG_TO_BRI NG) ;
return;

}
| i nk=f _newsend(CAT_EHELLO OLI B, C_LI NKCL, O LC_START, | kpi d, DF_LI NK_TEXT) ;

cl _l'ink=cl _add_object (link);
| en=p_send4(link, O LC_GET_DATA, &buf[0], 50);
if (len>0)
{
buf [I en] =0;
p_send4(Dat App3, O_EW REPLACE, &buf[0], 0);
}
w_ws->wserv. f | ags&=(~PR_WSERV_RECEI VED_KEY) ;
cl _clean_item(cl _link);
}

#pragma METHOD_CALL

METHOD VO D ehbwi n_wn_key(PR_EHBW N *sel f, | NT keycode, | NT nods)
{
SE_EDW N sense;

if (keycode! =W KEY_RETURN)

p_send4(sel f->ehbwi n. edwi n, O WN_KEY, keycode, nods) ;
el se i f (rmods&W PSI ON_MODI FI ER)

DoLi nkPast e() ;
el se

}

In amore general setting, one call tol c¢_st art will normally be followed by a sequence of callsto
| c_get _dat a, continuing until thel en return value from one of them is negative (it will actually be the
valueE_FI LE_EOF, but it isnot necessary to test for this explicitly).

The client also has the option of terminating the transaction by callingl c_st op at any stage. This has not
been donein the above example, simply because the dest r oy method of LI NKCL (which istriggered by the
abovecall tocl _cl ean_it em) automatically sendssel f anl c_st op message.

Note that the client has to specify the amount of datait is prepared to accept, at each stage of the
transaction, by means of the final parameter to thel c¢_get _dat a message. Thisvalueis communicated to
thelink server as thel en parameter inthel s_get _dat a message.

The significance of the line of code

w_ws->wserv. fl ags&=(~PR_WSERV_RECEI VED_KEY) ;

14-9

OBJECT ORIENTED PROGRAMMING GUIDE

istoavoid thelink client “stealing” the link paste server status, when it next passes into background.

Special help with link pasting to and from edit windows

The ew_bring_in method of EDWIN

In practice, any application that wishesto link paste text into an instance of EDW N would actually use the
ew_bri ng_i n method of that class- which encapsulates the stages of

creating the LI NKCL object
sending therelevant| c_start andl c_get _dat a messages
sending various messages to itself.

Theew bring_i n method also encapsul ates knowledge of the various standard types of textual link paste
formats. For interest, the complete code of edwi n_ew_bri ng_i n follows (though it will be necessary to
read the Edit Windows chapter carefully to appreciate some parts of it - eg some of the utility routines used):

METHOD | NT edwi n_ew_bring_in(PR_EDW N *sel f, I NT | kpid, | NT format)

{

PR_ROOT *1i nk

I NT cl _Iink;

I NT Si ngl eShot ;
Ul NT pos;

U NT totlen;

I NT | en

I NT err

I NT of fset;
TEXT buf[258];

14-10

14 LINK PASTE

CheckNot ReadOnl y(sel f);
Si ngl eShot =f or mat &EW BRI NG_SI NGLE_SHOT;
if (format&(1<<DF LI NK_PARAS))
f or mat =DF_L| NK_PARAS;
else if (formaté&(1<<DF_LI NK_TABTEXT))
f or mat =DF_L| NK_TABTEXT;
el se
f or mat =DF_LI NK_TEXT;
l'i nk=f _newsend(CAT_HW M OLI B, C_LI NKCL, O LC_START, | kpi d, format);
cl _l'ink=cl _add_obj ect (Iink);
pos=sel f - >edwi n. cpos;
totl en=0;
buf [0] =0;
of fset =1;
while ((len=p_send4(link, O LC GET_DATA, &buf[1], 256)) >=0)
{

if (!offset)
| en++;
if ((err=p_entersend5(self, O EW EP_I NSERT, pos, &uf[offset],len))!=0)
{
p_send4(sel f->edw n. doc, O EP_DELETE, sel f - >edwi n. cpos, sel f -
>edwi n. cpos+totlen);

cl _clean_item(cl _link);
p_send3(sel f, O EW LEAVE, err);
}

totl en+=len;

pos+=l en;

i f (SingleShot)

{
p_send2(link, O LC_STOP);
br eak;

}
if (format!=DF_LI NK_PARAS)
of f set =0;

sel f->edwi n. cl en+=totl en;

Edwi nFwdChange(sel f);

Set Edwi nSel ect (sel f, sel f->edwi n. cpos,totlen);
w_ws->wserv. fl ags&=(~PR_WSERV_RECEI VED KEY) ;

cl _clean_item(cl _link);
return(0); /* confirmno | eave */
}

Simple example of calling EW_BRING_IN

Thecodeinthencoe_bri ng method of the command manager of the example Notes application (optionally
installed into \sibosdk\notes) shows how simpleit can beto call ew_bring_i n:

METHOD VOI D noconmman_ncoe_bri ng(PR_NOCOMVAN *sel f)

{
I NT | kpi d;
ULONG | kf nt ;

CheckEditing(self);
| kpi d=p_send3(w_am >appman. system O_SY_LI NK_PASTE, &l kfnt) ;
if (!lkpid || !'(lkfnm & (1<<DF_LINK_TEXT)))

{
hi nf oPri nt (- SYS_NOTHI NG_TO BRI NG) ;
return;

}
p_send4(Dat App3, O EW BRI NG_I N, | kpi d, 1<<DF_LI NK_TEXT) ;
}

Note however that the value Ew BRI NG_SI NGLE_SHOT can be orred into the specified format mask, to force
the transaction to terminate after just one stage. If the code given earlier for the Ehello application were to
be modifiedto call ew_bri ng_i n instead, EW BRI NG_SI NGLE_SHOT would need to be specified in that
case.

14-11

OBJECT ORIENTED PROGRAMMING GUIDE

The EWLINKSV class

Just astheew_bri ng_i n method of EDW N provides system support for link pastinginto edit windows, so
also isthere system support from link pasting out of edit windows. Thisisthe EWLI NKSV class, from
HWIM.

Despiteits name, EWLI NKSV isnot a subclass of LI NKSV; rather, it is a subclass of ROOT, but its name
indicatesitsintended use as a component of aLl NKSV (subclass) object.

For example, consider the declaration of the NOLI NKSV class in the Notes application category file:
CLASS nol i nksv |inksv

REPLACE | s_set _f or mat
REPLACE | s_get _data
PROPERTY

{
PR_EWLI NKSV *ew s;

}
}

Theintended use of EWLI NKSV can be seen from the following example code (providing the
I's_set_format andl s_get _dat a methods of NOLI NKSV):

#i ncl ude <notes.g>
#i ncl ude <hwi m h>

GLREF_D PR_EDW N *Dat App3;

LOCAL_C VOI D DestroyLi nker (PR_NOLI NKSV *sel f)

{
hDestroy(sel f->nolinksv.ew s);
sel f->nol i nksv. em s=NULL;

}
#pragma METHOD_CALL

METHOD VO D nol i nksv_I| s_set _format (PR_NOLI NKSV *sel f, | NT type)

{
DestroylLi nker (sel f);
sel f -
>nol i nksv. ewl s=f _newsend(CAT_NOTES_HW M C_EWLI NKSV, O EW.S | NI T, Dat App3, type) ;
}
METHOD | NT nolinksv_Is_get_data(PR_NOLI NKSV *sel f, | NT |en)
{
if (len>0)
{

if (((INT)(self->linksv.len=p_send4(self->nolinksv.ew s,
O_EWLS_EXTRACT, &sel f->l i nksv. buf, | en)))>=0)
return(TRUE);

}
DestroylLi nker (sel f);
return(FALSE);
}

Evidently, theewl s_i ni t method needs to be passed the handle of the associated EDW N instance (in this
case, thisis stored at Dat App3) and the specified format type. Thereafter theewi s_ext ract method
returns the value that should be writtenintol i nksv. | en (or anegative number, if the transaction has
terminated), and also writes back, to one of the passed parameters, thevaluefor | i nksv. buf .

The three text formats revisited

The code for EWLI NKSV, reproduced below, contains (in conjunction with the code for theew_bring_in
method of EDW N) what isin effect theimplicit definition of the three standard link paste text formats:

14-12

14 LINK PASTE

CLASS ewl i nksv root
Conponent of |inksv class, extracts data from edw n

{

ADD ewl s_init

ADD ew s_extract

PROPERTY
{
VOl D *doc;
WORD st at e;
UWORD pos;
UWORD par end;
UWORD posend;
TEXT buf[256];
}

}

METHOD | NT ewl i nksv_ewl s_extract (PR_EW.I NKSV *sel f, TEXT **ppb, Ul NT bl en)
{
U NT | en;

I NT striptabs;
TEXT *pb;
TEXT *pbend;

| en=sel f->ew i nksv. posend-sel f - >ewl i nksv. pos;
if (!len)
return(-1); /* finished */
if (len>=blen)
| en=bl en;
p_send5(sel f->ew i nksv. doc, O EP_EXTRACT, sel f->ew i nksv. pos, &sel f -
>ewl i nksv. buf[0], | en);
if (self->ewinksv.state!=DF_LI NK_PARAS)
{
striptabs=(sel f->ew inksv. state==DF_LI NK_TEXT) ;
pb=(&sel f->ew i nksv. buf[0]);
for (pbend=pb+l en; pb<pbend; pb++)

{
if (!*pb)
{

sel f->ew i nksv. pos++; /* skip the zero too */
br eak;

}
if (striptabs && *pb=="\t")
*pb=" "}

| en=pb- (&sel f->ewl i nksv. buf[0]); /* excludes any trailing zero */

sel f->ew i nksv. pos+=| en;
*ppb=(&sel f->ew i nksv. buf[0]);
return(len);

}

METHOD VOI D ewl i nksv_ewl s_init (PR_EW.I NKSV *sel f, PR_EDW N *edwi n, | NT state)
{
U NT | en;

sel f->ew i nksv. doc=edwi n- >edwi n. doc;

| en=p_send3(edw n->edwi n. scring, O SI _GET_SELECT, &sel f->ew i nksv. pos);
sel f->ew i nksv. posend=sel f->ewl i nksv. pos+l en;

sel f->ew i nksv. st ate=st ate;

}

Native formats

In many cases, applicationswill wish to support “native” formats of link paste data. For example, the Word
Processor link pastes styles and emphasis data along with the text selected. Another exampleisthat the

Series 3a Agendalink pastes the details of an appointment - including the alarm setting and memo setting, if
any.

In cases like this, the mask specifiedinthesy_I i nk_ser ver message should include the bit for
DF LI NK_NATI VE.

14-13

OBJECT ORIENTED PROGRAMMING GUIDE

For example, thews_backgr ound method of the Word Processor is asfollows:

METHOD VO D wpwserv_ws_background(PR_WPWSERV *sel f)

{
I NT type;

if (self->wserv.flags&PR WSERV_RECEI VED KEY)

{
type=(1<<DF_LI NK_TEXT) +(1<<DF_LI NK_TABTEXT) +(1<<DF_LI NK_PARAS) ;

if (!'lIsAlias()) /* see whether plain text alias */

type=(1<<DF_LI NK_TEXT) +(1<<DF_LI NK_TABTEXT) +(1<<DF_LI| NK_PARAS) +(1<<DF_LI NK_NAT
I VE) ;
if (!'((PR_EDW N *)HandTW n) - >edwi n. sel ect)
type=0;
p_send4(w_am >appman. system O_SY_LI NK_SERVER, t ype, 0);
}
}

Note that the Window Server process- which isthe central store, on the Series 3 and the Series 3a, for link
paste data information - never reports the DF_LI NK_NATI VE hit to an application that differs from that
which registered the data. (Thistest isbased on the result of callingp_pnane.) For thisreason, when the
DF_LI NK_NATI VE bit is set in the mask of available formats, the application can rest assured that the link
paste server isindeed the same application asitself (though, possibly, running under adifferent alias).

By convention, the top eight bitsin the 32-bit wide mask of formats are reserved for applications passing
more information to each other about whichtypes of their own native format are presently available.

Final comments

Note that the link paste server must rununattended. Thereisno point in presenting the user with a query
dialog, asking how the link paste serviceisto proceed. Thisisbecausethe link paste server isin
background: the user will not see the dialog, and will just notice that the link paste operation in the
foreground window has completely stalled.

If really desired, the link paste server can obtain additional information from its client, by having the client
present the query dialog on its behalf. The information required to effect this would have to be defined and
included as part of the native format (bear in mind that each partner in the process has access to the PID of
the other so that the link paste IPC can be supplemented, if desired, by other forms of IPC at that moment).

One other point that may be worth mentioning is the fact that the link server can happily call p_I eave
(directly or indirectly) at any stage of its operation. System code (inLI NKSV and LI NKCL) ensures that the
error notification takes place in the client process, and not in the server process.

14-14

CHAPTER 15

HWIM RESOURCE FILES

The basic information about resource files that appliesto all SIBO applicationsis covered in the Resource
Files chapter of the Additional System Information manual. That chapter includes:

theresourcefile format

the different possible locations for resourcefiles

advice about multi-lingual applications

use of the resource compiler tool rcomp.exe

the allowed content of a.rss source file, including STRUCT and constand declarations

This chapter contains additional information that is specific to HWIM applications.

The application resource file

Aswas mentioned in the Introduction chapter, all HWIM applications must have an application resource
filethat contains at |east the resources required to construct the application's menu bar and pull-down
menus. Simple examples of such resources appear in the Hello World and Commands and Command Menus
chapters.

A further, morerealistic, example can be found in the source files for the Record application. In addition to
the resources for the application's command menus, the file record.rss contains a number of resources of
various types. In particular, it#i ncl udesthefilerecord.hlp that contains Help resources.

Resource file location

By default, the application resource file is expected to be built into the application's image file, with the aid of
an add-filelist (.afl) file, in the second of the four possible add-file slots. A resource filein thislocation will
automatically be opened by system code during the initialisation of the application.

An application that wishes to load its resource file from a different location may subclass the HW MVAN
application manager, replacing theam r scname method. This method is passed a pointer to a buffer and
must write the full file specification of the resource file to thisbuffer.

For example, an application that has an application resource file with the same name as the application's
image file, and resident in the same directory as the image file, could use the following replacement
am r scname method:

METHOD VOI D nyapprman_am r scname(PR_MYAPPMAN *sel f, TEXT *pnane)

{
p_fparse(". RSC", Dat ConmandPt r, pname, NULL) ;

}

A multi-lingual application with aresource file for each of a number of languages could use code similar to
that suggested in the Resource Files chapter of the Additional System Information manual:

15-1

OBJECT ORIENTED PROGRAMMING GUIDE

METHOD VO D nyappman_am r scname(PR_MYAPPMAN *sel f, TEXT *pnane)
{
P_I NFO f;

p_at os(pnane, "\\app\\archive\\archi v¥2d. rsc", p_getl| anguage());
p_f parse(pname, Dat CommandPt r, pnanme, NULL) ;
if (p_finfo(pname, &) <0)
p_supersend3(sel f, O AM_RSCNAME, pnane) ;
}

Asexplained in that chapter, the resource files are assumed to reside in an application-specific subdirectory
of the\app directory; in this example the directory is\app\archive. The resourcefile for the default language
should be built into the image file so that it is available for use on a machine that is set to alanguage not
supported by the application. If thecall top_f i nf o indicatesthat aresourcefile for a particular languageis
not available, supersending the AM_RSCNAME message ensures that the built-in resource file will be used.

See also the description of this method in the chapter Using the System Components.

Loading an application resource

Oncetheresourcefileisopen, any of its resources may be read by sending the application manager either
an AM_LOAD_RESOURCE or an AM_LOAD_RES_BUF message (or by use of the equivalenthLoadResour ce or
hLoadResBuf utility functions) passing the resource id of the required resource. Note that the resourceids
are published in the .rg file that is generated during compilation of the source file by rcomp.exe.

Resource Structures

The basic resource structures used for strings, dialogs and the standard dialog components are defined in
theincludefile hwim.rh. Thisfile should always be #i ncl uded in the application-specific resourcefile.
Application-specific resource structures, if required, will need additional structure definitions. These may
appear in-linein the .rsssource file or may be written in a separate header file, to be #i ncl uded in the
source file, together withhwim.rh. It is customary to give such afilea.rh extension.

The system resource file

The system resource file resides in the ROM, and the (English) sourceis copied into a\sibosdk\resource
directory when the OOP option of the SDK isinstalled, This source consists of thefiless _.rss,s_.hlp and
sx_.ra. Thefirst of these threeisthe main source file and includes the other two. Thefile s _.hlp containsthe
source of the system help resources and sx_.ra contains those resources that are specific to the Series 3a.
All resources other than the onesin sx_.ra are common to both the Series 3 and Series 3a, although a small
number of them contain additional itemsthat are not available on the Series 3. All such items are commented.

The system resource file contains text strings, dialogs and other resources that are used by system code. In
addition to supplying ready-made resources that can also be loaded by application code, the source files
provide awide range of example templates for constructing application-specific resources.

The source files contain comments that are primarily supplied to aid translators to produce non-English
versions. These comments may, however, prove of use to developers by indicating the purpose of, and/or
the constraints associated with, a particular resource.

Loading a system resource

A resourceisidentified as a system resource by specifying a negative resourceid. Otherwise, the process of
loading a system resource (using, for example, hLoadResour ce or hLoadResBuf) isidentical to loading an
application resource. For example, the following code can be used to allocate memory and load the choice
list system resource with resource id SYS_NO_YES:

TEXT *p;
hLoadResour ce(- SYS_NO_VYES, &p) ;
Note the explicit minus sign.

Theresourceids of system resources are published in theincludefiles .h.

15-2

15 HWIM RESOURCE FILES

Using system resources

Many system resources are used implicitly by application code. For example, callinghBusyPri nt implicitly
loads the SYS_BUSY resource string, and an application that runs one of the system dialogs will cause the
associated dialog resource to be loaded from the system resource file.

A number of system resources are suitable for explicit use within an application. Perhaps the most
commonly used group is the various string resources that are used as information messages. After a
successful copy operation, for example, an application could present confirmation to the user with the code:

hi nf oPri nt (- SYS_COPI ED_PROWPT) ;

Other useful system resources include dialog box components such as the various choice lists, particularly
SYS_OFF_ON and SYS_NO_YES, and the general-purpose action lists, for example, SYS_AC_NO_YES and
SYS_AC_CONTI NUE. Thefollowing extract shows the use of aNo/Y es choice list and is suitable for inclusion
as an element of an application DI ALOG resource:

CONTROL
{
cl ass=C_CHLI ST;
pronpt="Ilgnore parity";

i nf 0=CHLI ST{ri d=- SYS_NO_YES; };
}

Caution

Inan application it is possible that a system resource could be used in a context that is different from the
onefor which it was designed. This could cause problemsin a multi-lingual application, since translations of
system resources may expose differencesin context that are not apparent in a single language. System
resources should therefore be used cautiously in applications that are intended to run in more than one
language. If an application writer has any doubt about the intended use of a system resource, he or she
should use an application-specific resource.

Help resources

An application can supply application-specific Help information by means of one or more top-level
HELP_ARRAY resources. An example of such aresourceisasfollows:

RESOURCE HELP_ARRAY nyapp_hel p
{

t opi c="Myapp";

topi c_i d=myapp_hel p_i ndex;

}

It containsat opi c item, used to construct thetitle for aHelp screen, and at opi c_i d which containsthe
resourceid of aTOPI C_ARRAY resource. Such aresourceisillustrated below; it containsani d_I st array of
the resource ids of one or more secondary HELP_ARRAY resources:

RESOURCE TOPI C_ARRAY nyapp_hel p_i ndex

id Ist=

{

basi cs,

- SYS_HELP_EDI T,

- SYS_HELP_PRI NT,

- SYS_HELP_FI LES,

- SYS_HELP_NO_SYS_MEM
b
}

Note that this array may contain references to any combination of system and application-specific
resources, in any order.

A secondary HELP_ARRAY resource containsat opi c item, again used in atitle, followed by astrl i st
array of strings, each of which will be displayed on asingle line of aHelp screen.

15-3

OBJECT ORIENTED PROGRAMMING GUIDE

RESOURCE HELP_ARRAY basics
{

t opi c="Basics";
strlst=

STRING {str="Enter to confirmselection";},

STRING {str="";1},

STRING {str="To move around:";},

STRI NG {str=ARROWS" to nmove cursor";},

STRI NG {str="Psi on-"<W5_SYMBOL_LEFT_KEY><WS_SYMBOL_RI GHT_KEY>" go to start/end
of line";},

STRI NG {str="Psi on-"<W5_SYMBOL_UP_KEY><WS_SYMBOL_DOWN_KEY>" to PageUp/ Down";},
STRI NG {str="Control -Psion-"<W_SYMBOL_UP_KEY><WS_SYMBOL_DOWN_KEY>" go to

top/ bottoni;}

|

}

Each line of text, after compilation, must not include more than 39 characters.

Using Help resources

The Help information that is provided when a user presses the Help key may be set within an application by
writing the resource id of atop-level HELP_ARRAY resource to the window server object'shel p_i ndex_i d
property. For example, to use the Help data shown above:

w_ws->wserv. hel p_i ndex_i d=MYAPP_HELP;

Application code may set the Help resource id at any time. If the value of the window server object's
hel p_i ndex_i d iszero (the default value) system Help will be supplied. Most applications that supply
their own Help will normally set the Help resource id during initialisation, inthews_dyn_i ni t method.

An application may provide context -sensitive Help by changing the Help resource id as the application
context changes. This may be done either by writing anew valuetow_ws- >wser v. hel p_i ndex_i d, or by
subclassing the client window to replace itswn_sense_hel p method.

The Help supplied for a dialog box may be set independently by creating additional sets of Help resources.
The Help for adialog box may be set either by writing to itshel pri d property, or by supplying a
replacement wn_sense_hel p method in a DLGBOX subclass. Again, default system Help is supplied for
dialog boxes.

15-4

CHAPTER 16

USING THE SYSTEM COMPONENTS

The application manager and the window server object contain a number of method functions that an
application may use to perform common operations.

Some methods can never fail and will therefore never cal p_I eave. Thetitleline of a number of the more
significant methods of this type are marked with aleading & symbol.

The application manager

HW MVAN is a subclass of the OLIB APPMAN class and provides the functionality of the HWIM application
manager. All HWIM applications create and initialise an instance of (a subclass of) HW MVAN during their
initialisation. The handle of thisinstance is automatically written to the magic staticw_am

Subclassers may replace existing methods but, for future compatibility, should avoid adding new methods or
property.

A built-in application, or any application which supports only one user language, may not need to subclass
HW MVAN. Third party multi-lingual applications will need at least to replace the am r scname method to |oad
the application resourcefile.

Property

Application manager property is accessible viathew_ammagic static. Although this means that the
property may be accessed from any point in the application code, the property should, except where write
accessis specifically allowed, be considered as read-only. An application may find it useful to accessthe
following items of property:

hwi mman. command the command byte, if any, read from the process command line. The value
H_COMVAND_DEFAULT_FI LE will never appear, sinceit is converted to one of
H_COMMAND_CREATE_FI LE or H_COMMAND_OPEN_FI LE, depending on
whether the specified file already exists

hwi nman. def ext apointer to the application’'s default file extension, if any, as supplied in the
process command line

hwi mman. al i asi nfo apointer to the application's aliasinformation, if any, as supplied in the
process command line

A command line example

If the heap cell (pointed to by Dat CommandPt r) containing the command line for afile-based application
has, for example, the following content:

ROM : WORD. APP<0><0x29>0Pr ogr am<0>. OPL OROPO<0>LOC: : M \ WRD\ MYPROG. OPL<0>
then, at the conclusion of system initialisation:
hwi mman. command is' O (H_COMMAND_OPEN_FI LE)

hwi mman. def ext pointsto the string". oPL" (the original following spaceis overwritten by zero)

16-1

OBJECT ORIENTED PROGRAMMING GUIDE

hwi mman. al i asin points to the string" OROPO"
fo

Dat ProcessNameP pointsto the string" Pr ogr ant'
tr

Dat UsedPat hname pointsto the string" LOC: : M \ WRD\ MYPROG. OPL"
Ptr

Dat St at usNanePt points to the string " MYPROG. OPL"
;

For an application that is not file-based, and therefore has nothing following the application file namein its
command line, all the itemsin the above list will be set toNULL.

See The Series 3 command line in the Communicating with the System Screen chapter of the Series 3
Programming Guide for further information on the contents of the command line.

Usable methods

The methods described in this section are intended to be called explicitly by application code. An
application will not normally replace any of these methods.

AM_NEW_FILENAME Record a new filename

VOl D am new_fil ename(TEXT *newnane);

Record the new file name pointed to by newname. The buffer pointed to by newname must remainin
existence until the name is changed again.

If the current file nameis specified to be in the process command line (hwi mman. cont i g iISTRUE) then the
alocated heap cell containing the command line is truncated to remove the name, andhwi mman. conti g is
set to FALSE.

The magic staticsDat UsedPat hNamePt r and Dat St at usNamePt r are set up to point to the appropriate
positionsin the text string.

AM_LOAD RESOURCE Load aresource

I NT am_ | oad_resource(I NT resid, UBYTE **ppdata);
Allocate abuffer and load into it the resource with idr esi d from the appropriate resource file.

A negativer esi d indicates that the resource is to be found in the system resourcefile, with an id equal to
the absolute value of r esi d. Otherwiseit is assumed that the resource is to be found in the application
resourcefile.

HWIM applications must indicate their intention to use both the application and system resource files by
setting the FLG_APPMAN_SRSCFI LE and FLG_APPMAN_RSCFI LE flags, inmai n() , before creating and
initialising the application manager.

The attempt to load the resource may fail dueto an out of memory condition, in which case
p_| eave(E_GEN_NOVEMORY) iscalled.

Any other error when attempting to read an application resource is assumed to be due to the removal of the
application resourcefile. (It is assumed that only the application resource file can be removed, since the
system resource fileisin the ROM.) An attempt isthen made to locate the resource file by sending

AM_FI NDI MG and AM_RSCNAME messages. If thisis unsuccessful the method calls

p_l eave(E_FI LE_NXI ST), otherwise the resource file is reopened - which could itself fail, calling

p_| eave(E_GEN_NOMEMORY) . Following this the resourceisloaded which, again, may fail and call

p_| eave(E_GEN_NOVEMORY) .

The method returns the size of the |oaded resource.

For more information on resource files, see the Resource Files chapter in thismanual.

16-2

16 USING THE SYSTEM COMPONENTS

AM_LOAD_RES BUF Load aresource to a buffer

I NT am | oad_res_buf (I NT resid, UBYTE *pbuf);

Load into the buffer pointed to by pbuf the resource withidr esi d from the appropriate resource file. There
isno memory allocation involved, and thus no likelihood of failure due to an out of memory condition.

A negativer esi d indicates that the resourceis to be found in the system resource file, with an id equal to
the absolute value of r esi d. Otherwiseit is assumed that the resource isto be found in the application
resourcefile.

HWIM applications must indicate their intention to use both the application and system resource files by
setting the FLG_APPMAN_SRSCFI LE and FLG_APPMAN_RSCFI LE flags, inmai n() , before creating and
initialising the application manager.

Any error when attempting to read an application resource is assumed to be due to the removal of the
application resourcefile. (It is assumed that only the application resource file can be removed, since the
system resource fileisin the ROM.) An attempt is then made to locate the resource file by sending

AM_FI NDI MG and AM_RSCNAME messages. If thisis unsuccessful the method calls

p_l eave(E_FI LE_NXI ST), otherwise the resource fileis reopened. Following this, the resource isloaded.

Note that the implementation of theam f i ndi mg method meansthat, in practice, theam | oad_r es_buf
method can never fail inan HWIM application.

The method returns the size of the loaded resource.

9 AM_FINDIMG Find application image file
I NT am fi ndi ng(VO D);
Refuse to continue until the image file has been located.

If the image file can not be found, it is assumed that thisis because the SSD containing it has been removed.
The application is suspended by displaying an alert requesting that the SSD be replaced.

It isworth noting that, in consequence, theam | oad_r es_buf method can never fail inan HWIM
application.

& AM_ADD_TASK Add a task

VOl D am add_t ask(PR_ACTI VE *hand) ;

Add aninitialised active object to the task queue, in priority order, as determined by the active object's
active.priority fied.

Theitem is added to the list immediately following all existing items with the same (or higher) priority.

AM _YIELD Wait for all activity to cease

VO D am yi el d(VO D);

Suspend the current action until all active objects with priority greater than PRI ORI TY_ACTI VE_COMPUTE
have had the opportunity to service their outstanding events.

See the OLIB Reference manual for a description of active objects.

Replaceable methods

The methods described in this section are called by system code and are not intended to be called explicitly
by application code. They may be replaced in an application-specific subclass of HW MVAN.

16-3

OBJECT ORIENTED PROGRAMMING GUIDE

AM_RSCNAME Generate resource file name

VO D am rscname(TEXT *pnane);

Write, to the buffer pointed to by pnane, (which must be at least P_FNAMESI ZE byteslong) the default full
file specification (see the Files chapter of the PLIB Reference manual) of the application resourcefile.

The nameis generated from the application’s start-up full file specification, pointed to by the magic static
Dat CommandPt r . The name al so depends on the current language, as determined by the value returned by a
call top_get | anguage.

If thelanguageis English (p_get | anguage returnsavalue of 1) the resource file is assumed to be built into
theimagefile, so that the full file specification of the resource fileisidentical to that of theimagefile.

For all other languages the resource file is assumed to be located in the same directory and have the same
name as the application image file, but with alanguage-dependent file name extension. The extension is
assumed to be .~nn, where the charactersnn represent the language number, as two decimal digits. Thus, a
German language resource file would have a.~03 extension.

Note

This method is designed for use by built-in applications, whose resource filesarein the ROM : device
(which does not support subdirectories) and whose default language is English. A multi-lingual application
that isrun from an SSD should subclassHW MVAN to replace this method. A possible replacement method is
described in the Resource Files chapter.

@ AM_NOTIFY Display notifier

VO D am noti fy(U NT nmess1l, UINT ness2, UWORD *pbut);
Cdl thep_noti fy service, with text loaded from resourcefiles.

Up to two text messages are specified by theresourceidsmess1 and mess2. If pbut iSNULL, thesingle
default button 'CONTINUE' (or the non-English equivalent) will be displayed. Otherwise, pbut is assumed
to point to an array of three resource ids for the three notifier buttons.

All resourceids follow the resourceid rules as specified in the description of theam | oad_r esour ce
method. If any id iSNULL then no text isloaded for that id.

Oncetheresource strings are loaded the p_not i f y serviceisinvoked. The allocated space for the resource
stringsisfreed after use.

This method will not fail dueto lack of memory. If there is not enough memory available to load any of the
specified resources, the corresponding part of the notification text is not displayed.

W AM_NOTIFYERR Report an error

VO D am notifyerr(INT err,|NT resid);

Notify an error for error number er r, with text as specified by the resource idr esi d providing additional
information about the context of the error. If no additional text isrequired, r esi d may be zero. This method
is guaranteed to succeed in displaying an error message.

Cancels any busy indicator by callingwCancel BusyMsg and may write zero to the WSERV active object's
wserv. filter property (seethe later section onKeyboard filters). An application that needsto restore
either or both of these to their original state on conclusion of the error report may need to subclassthis
method.

If err hasthe value RUN_ACTI VE_CLEANUP_NONOTI FY the method returns at this point, without displaying
any error notification.

Unlike in the superclassam not i f yerr method, thep_not i f y serviceisnot used. The method callsthe
hEr r or Di al og utility function, to attempt to display the error in an error dialog. If thisfails dueto lack of
memory, the error isdisplayed as an alert, by sendingw_ws aWs_ALERT message. This alert cannot fail, but
may not display any context information specified by r esi d if the attempt to load this resource fails.

16-4

16 USING THE SYSTEM COMPONENTS

Using one of these two forms of error display means that the error notification isapplication modal; only
that application is suspended and the user may task switch to another application. The superclass method is
system modal, preventing interaction with any application until the user has responded to the error report.

The window server active object

An instance of the WSERV active object classisthe application's event source for events (keypresses,
redraws, and so on) generated by the window server process. Every HWIM application creates an instance
of (asubclass of) WSERV at an early stage in itsinitialisation and thisinstance must remain in existence until
the application terminates. The handle of thisinstance is automatically written to the magic staticw_ws.

Thereisno need to send a DESTROY message to the application's instance of WSERV since its resources will
be released, along with all other application resources, on termination of the application.

The handle of an application'sWSERV object is stored in the magic static w_ws and is therefore available to
the whole of the application.

In addition to its main rol e as the source of window server events, WSERV supplies anumber of general
services and utilities, including, for example, methods to:

start up an application-specific dialog
run avariety of system-supplied dialogs
evaluate anumeric expression

word wrap a paragraph of text

An application is expected to subclassWsERV, at least to supply aws_dyn_i ni t method which should
perform al application-specific initialisation.

Subclassers may, where appropriate, replace existing methods but, for future compatibility, should avoid
adding new methods or property.

Property

WSERYV property is accessible viathe w_ws magic static. Although this means that the property may be
accessed from any point in the application code, the property should, except where write accessis
specifically alowed, be considered as read-only. An application may find it useful to access the following
items of property:

wserv.com the handle of the application's command manager, assumed to be an
instance of (a subclass of) COMVAN, set by system initialisation code

wserv. bar NULL if the application is not displaying a menu bar, otherwise the handle
of the application's menu bar, set by system code

wserv. cli the handle of the application's client window, set by application-specific
initialisation code (inws_dyn_i ni t) and modified either directly by
application code or by thews_change_cl i wi n method

wserv.filter if not NULL, may be either -1 to discard all incoming keypresses, or the
handle of awindow to which all keypresses are diverted (see the following
section on Keyboard filters). An application may write to this property

wserv. filmethod if not NULL, the method number of the message to be sent to the object
specified by wserv. filter (provided thisisalso not NULL) on receipt of a
keypress (see the following section on Keyboard filters). Otherwise a
VN_KEY message is sent. An application may write to this property

wserv. fl ags acollection of state flags, for system use

wserv. hel p_index_id either zero or theresource ID of the application's Help index. An
application may write to this property

16-5

OBJECT ORIENTED PROGRAMMING GUIDE

wserv. | ock zero if the application is not locked. Otherwise a count of the current
number of times the application islocked. The count isincremented and
decremented by thews_| ock method

wserv. printer the handle of the application’s print manager, assumed to be an instance of
(asubclass of) the FORM PRI NTER class, set by the
ws_ens_print _cont ext method

Keyboard filters

The normal processing of keys can be subverted by settingwserv. fil t er and, optionally,
wserv. fi |l met hod to non-zero values. The effect differs slightly between the Series 3 and the Series 3a.

Filtering on the Series 3

Ifwserv.filter issetto-1 (Oxffff) all keypressesare discarded. Any other non-zero value is assumed to
be the handle of an object to which all keypress messages should be redirected, passing both the keycode
and the modifiers flags as two parameters. By default the keypressis sent asaWN_KEY message but if, in
addition, wser v. fi | met hod isnon-zero, its value is taken to be the method number of the message to be
sent. The behaviour is asindicated by the following code.

VO D ProcessKey(|I NT keycode, | NT nodifiers)
{

I NT consuned;

if (w_ws->wserv.filter)

{

if (wws->wserv.filter==(PR_.WN *)0xffff)
return;

if (w_ws->wserv.filnethod)
consunmed=p_send4(w_ws->wserv.filter,w ws-

>wserv. fil nethod, keycode, nodi fiers);

el se
consumed=p_send4(w_ws->wserv.filter, O WN_KEY, keycode, nodi fi ers);

if (consumed==WN_KEY_CHANGED)
return;

}

/* Hel p, Menu and client wi ndow key processing */

The keypress method that is called when afilter is set must returnWN_KEY_CHANGED to indicate that it has
processed the key. Otherwise it should return WN_KEY_NO_CHANGE, in which case the keypress will be
offered for further processing, asif thefilter had not been set. Note that consumption of the key by thefilter
means that Help and Menu bar interactions are disabled.

If an error occurs while afilter is set, the application manager am not i f yer r method clearswserv. filter
(but notwserv. fil met hod) otherwise the error notification dialog could not be cancelled by pressing the
Esc key. A filter isnormally set temporarily, for the duration of a specific process (say, while loading afile)
and an error will usually terminate the process. Clearing the filter on an error condition isthus normally a
correct action.

In exceptional circumstances an application may require the filter to be maintained acrossan error condition.
This can be assured by replacing theam not i f yer r method, asfollows:

METHOD VOI D nyapprman_am noti fyerr (PR_MYAPPMAN *sel f, I NT err, | NT resid)

{
PR WN *filter;

filter=w ws->wserv.filter;
p_supersend4(sel f, O AM NOTI FYERR, err,resi d);
w ws->wserv.filter=filter;

}
Filtering on the Series 3a

Filtering on the Series 3afollows the same general pattern as described above for the series 3, except that
theam noti fyerr method clearsbothwserv. filter andwserv. fil net hod.

16-6

16 USING THE SYSTEM COMPONENTS

In addition, wser v. fi | met hod may be set to anegative value. In this case the Help key is not filtered and
theam noti fyerr method will restorethevaluesof wserv. filter andwserv. fil met hod after theerror
notification is complete. A negativewser v. fi | met hod isstill interpreted as a (positive) method number for
the purposes of sending a keypress message to the object whose handleisinwserv. filter.

A negativevalue of wserv. fi | met hod isintended to be used in asituation where afilter is set for the
duration of an operation that is less transient than, say, the loading of afile. An example of suchauseisin
the Record application while recording or playing afile (with repeats and trailing silence, playing could last
several hours) or while paused before recording (atruly indefinite period).

Usable methods

The methods described in this section are intended to be called explicitly by application code. An
application will not normally replace any of these methods.

& WS CHANGE_CLIWIN Log a new client window
PR_WN *ws_change_cliw n(PR_WN *whand) ;

Provided that the window with handle whand is not already the current client window, record thiswindow as
the new client window.

The previous client window, which must still exist, is de-emphasised (it is sent awN_EMPHASI SE, FALSE
message). The new client window is emphasised (sent a WN_EMPHASI SE, TRUE message) and is made the
foreground window. Itshandleis stored inwserv. cl i .

The method returns the handl e of the previous client window.

If the new window handle is the same as the previous one, the method does nothing except to return the
client window handle.

WS DO_DIAL Run a dialog
I NT ws_do_di al (HANDLE cat, |NT class, DL_DATA *pd);

Load, initialise and run the dialog specified by category handlecat and classcl ass. All HWIM dialogs
must be started via this method.

The DL_DATA struct is defined in hwimman.g as:

typedef struct

{

UWORD i d; di al og resource id

VOI D *rbuf; NULL or pointer to dialog result buffer
PR_DLGBOX **pdl g; NULL or location to receive dialog handle
} DL_DATA;

Users of this method should note the following:

the dialog receives, inorder, DL_I NI T, DL_DYN_I NI T, and DL_SET_SI ZE messages before being
made visible

the creation and initialisation is protected from out of memory failure, by the use of OLIB CLEANUP
mechanisms, until the dialog has been made visible. The application does not need to provide any
explicit protection against failure unless application initialisation code all ocates additional
resources

the dialog handleis not lodged in* pd- >pdI g until the dialog has been made visible

Thereturnvalueis zero if the dialog is cancelled by the cancel mechanism provided by system code (that is,
without the intervention of application-specific code - see the Dialogs chapter for further details). This
valueisonly of significance for dialogs for which the DLGBOX_NO_wal T flag isnot set.

The method callsp_I eave (which will trigger the automatic cleanup mechanism) on failure.

16-7

OBJECT ORIENTED PROGRAMMING GUIDE

WS WRAP_PARA Paragraph word wrap
I NT ws_wrap_para(TEXT *buf, INT | en, WRAP_DATA *pd);

Word wrap thefirst| en charactersin the buffer pointed to by buf , writing the number of charactersin each
line to successive bytes of the table pointed to by pd- >pt abl e (assumed to be pd- >nl i nes byteslong).

The WRAP_DATA struct is defined in hwimman.g as:

typedef struct

{

UWORD nar gi n; width (pixels) to fill with text
UWORD fmargin; wdth (pixels) of first |line

WORD f ont ; font used

UWORD styl e; styl e used

WORD nl i nes; max no lines to add to table

UBYTE *ptable; table of bytes to receive |line |engths
} VRAP_DATA;

Returns the number of linesinto which the text has been wrapped. If there are not enough entriesin theline-
length table, (i.e. if the potential number of linesis greater thanpd- >nl i nes) , then it returns zero.

Thenar gi n field gives the width of each linein pixels. This effectively prescribes the space availableto be
filled with text.

Thef mar gi n field issimilar tomar gi n but appliesonly to thefirst line.

WS DO_HELP Run help system

VOI D ws_do_hel p(I NT start_id);

Create, initialise and make visible ahelp dialog displaying the help information contained in the resource
withidst art _i d, assumed to be a HELP_ARRAY resource.

Help: System screen

wFiles

sFile selection
sDirectories
=Disks
=fipplications
=Information
=Control options

This method is normally called by system code, in response to the user pressing the Help key. See the
Resour ce Files chapter for more information on Help resources.

WS LOAD_CHLIST_RES Get choice list resource text
TEXT *ws_load_chlist_res(INT rid, INT nsel, TEXT *buf);

Copy, into the buffer pointed to by buf , the zero terminated string that forms choice list item number nsel
(O selectsthefirst item) in the choice list resource withidr i d. This method is somewhat analogous to the
more general application manager am | oad_r es_buf method.

It isthe user's responsibility to ensurethatr i d refersto achoice list resource and that the buffer is
sufficiently long to contain the specified string.

WS FREE_DIAL Run the free-form dialling dialog
VO D ws_free_dial (VO D);

Create, initialise and make visible the free-form dialling dialog:

16-8

16 USING THE SYSTEM COMPONENTS

Free-form dialling

Redial
Tab

If thefree-form dialog is already present or aHelp dialog is present, then the method does nothing and
returnsimmediataley.

WS LOCK Alter the lock count

I NT ws_I ock(I NT I ock);

Add or remove alevel of locking, depending on whether | ock iSTRUE or FALSE. A locked application does
not receive Shutdown or Switchfiles messages from the system screen.

If 1 ock iSTRUE and the application is currently unlocked, an attempt is made to prevent the receipt of any
outstanding window server event (since it may be a Shutdown or Switchfiles event). If this attempt istoo
late the incoming event is discarded. The magic static Dat Locked is set to TRUE andwser v. | ock is
incremented.

If the application is already locked, the only action istoincrementwser v. | ocked.

If 1 ock iISFALSE,wserv. | ock isdecremented and, if it is decremented to zero, Dat Locked iS Set to FALSE.

WS SET _MENUBAR Set alternative menu bar

WSERV_I NFO *ws_set _menubar (I NT rid);

UsehLoadResour ce to allocate acell and load into it the resource withidr i d (assumed to be a menu bar
resource) writing the address of the cell towser v. i nf o.

Returns aWsERV_I NFO, pointer to the allocated memory holding the original menu bar resource data. It is
the programmer's responsibility to store this value for future restoration of the original menu bar data
(normally by use of ws_r eset _menubar). If, exceptionally, thisresource is not to be restored, it may be
released withacall top_free.

Note that this method does not make the new menu bar visible, but the new menu will appear when the user
next presses the Menu key. Thereis no straightforward automatic means of forcing the new menu bar to be
displayed.

WS RESET _MENUBAR Reset the menu bar

VO D ws_reset _nmenubar (WSERV_I NFO *i nf 0) ;
Free the heap cell containing the current menu bar data and restore the one pointed to by i nf o.

It is expected that the pointer isavalue that was returned by an earlier use of thews_set _menubar method.

WS QUERY_DIALOG Run a query dialog

I NT ws_query_di al og(I NT secondrid, INT rid, INT *pargs);
Run the system query dialog, with up to two lines of text.

Thefirst line of text is generated, usinghAt ob, from the format string loaded from the resource withidri d
and the list of arguments pointed to by par gs. The generated text may not exceed 50 characters, including
the terminating zero. The value of pargs may be NULL if there are no arguments, andr i d may be zero, in
which case there will be no first line text. The second line of text isloaded from the resource with id
secondri d, which isassumed to be a simple string resource. The value of secondri d may be zero, in
which case there will be no second line text.

Returns TRUE if the user confirms the dialog, otherwise returnsFAL SE.

16-9

OBJECT ORIENTED PROGRAMMING GUIDE

See also thehConf i r mand h2Li neConf i r mutility functions.

WS ERROR_DIALOG Run an error dialog

I NT ws_error_dialog(INT err, INT rid, INT *pargs);
Run the system error dialog, with up to two lines of text.

Thefirst line of text is generated, usingp_er r s, from the error number er r . The second line of text is
generated, using hAt ob, from the format string loaded from the resource withiidr i d and thelist of
arguments pointed to by par gs. The generated text may not exc eed 50 characters, including the terminating
zero. The value of pargs may be NULL if there are no arguments, andr i d may be zero, in which case there
will be no second line text.

Returns zero, to confirm that the method did not call p_I eave. This method is suitable for calling under the
protection of p_enter.

SeealsothehErr or Di al og utility function.

WS _EVALUATE Evaluate an expression

I NT ws_eval uat e(TEXT *pResult, TEXT *pExpr, VO D *opl nod);

Evaluate the expression contained in the zero terminated string pointed to by pExpr , writing the result to the
buffer pointed to by pResul t .

Theresult is evaluated according to the format preferences derived from the evaluator environment variable,
M3V, accessed viathews_eval _env net hod, described below.

If theinitial value of the byte* pResul t iszero, the evaluation is performed in so-called ‘calculator’ mode.
After evaluation in this mode, the result buffer contains the numerical value, as a DOUBLE, inits first eight
bytes. Thisisfollowed by the text representation of the value, as a zero terminated string, using the calc
preferencesfrom M$V.

Any initial non-zero valuein*pResul t causesthe evaluation to be performed in ‘evaluator' mode. After
evaluation in this mode, the result buffer contains only the text representation of the value, as azero
terminated string, using the eval preferencesfrom M$V.

The expression to be evaluated may be any expression that is acceptable to the OPL programming language.
The value of opl nod may be either NULL or a pointer to the name of an OPL modul e containing additional
functions (for example, a set of hyperbolic trigonometrical functions) to be used in evaluating the
expression.

Returns-1if the evaluation is successful. Otherwise reports an error, usinghl nf oPri nt Er r, and then
returns the byte offset, within the buffer at pExpr , to the point at which the error was detected.

WS _EVAL_ENV Set or get evaluator environment variable
VOl D ws_eval _env(EXTENDED_MEM VALUES *pev, |NT getit);

The M$V environment variable stores evaluator format preferences. The method writesfrom * pev to the
M3V environment variable or reads from the M$V environment variable to* pev.

The EXTENDED_MEM VAL UES struct isdefined inh_eval.h as:

typedef struct
{
UBYTE eval Format; /* Double to Buffer format code for all except calc */
UBYTE eval DPl aces; /* Decimal places for all except calc */
UBYTE cal cFormat; /* Double to Buffer format code */
UBYTE cal cDPl aces; /* Deciml places, if relevant */
DOUBLE val ues[MAX_MEMORI ES] ;
} MEM_VALUES;

16-10

16 USING THE SYSTEM COMPONENTS

typedef struct

UBYTE eval Degr ees;
UBYTE cal cDegr ees;
MEM_VALUES nmenval ;
} EXTENDED_MEM VALUES;

Note that the Series3 and Series3a support two global sets of evaluator preferences, one specifically for the
Calculator application (set by the Calculator's Format command) and one for all other evaluations (set by
the System screen’'s"Evaluate” format command).

If getit iSTRUE, read the contents of the M$V environment variable into* pev. If the environment variable
does not exist it is created with default values as follows:

pev- >eval Degr ees=DEGREES_MODE;

pev- >cal cDegr ees=DEGREES_MODE;

pev->memval . eval For mat =P_DTOB_FI XED;

pev->menval . eval DPl aces=2;

pev->menmval . cal cFor mat =P_DTOB_GENERAL;

pev->menVal . cal cDPl aces=12;

p_bfil (&pev->nenval . val ues[0] , MAX_MEMORI ES*si zeof (DOUBLE) , 0) ;

If getit iSFALSE, write* pev to the M$V environment variable. Note that this process modifies the
contents of * pev.

The symbol DEGREES_MODE is defined in the include file hwimman.g

For more information on the conversion of floating point numbers to text and the definition of the sysmbols
P_DTOB_FI XED and P_DTOB_GENERAL, see the p_dt ob function in the Floating Point chapter in the Plib
Reference manual.

WS DIAL_ENV Set or get dial environment variable
VOl D ws_di al _env(DI AL_ENVAR *pev, |NT getit);
The D$X environment variable stores telephone dialling preferences.

The method writesfrom * pev to the D$X environment variable or reads from the D$X environment variable
to * pev.

The DI AL_ENVAR struct is defined indialdlgs.g as:

typedef struct

{
UWORD toneLengt hTicks; /*length of each tone in ticks */

UWORD del ayLengt hTi cks; /*interval between successive tones in ticks */
UWORD pauselLengt hTi cks; /*length of pause after dial-out code in ticks*/
UBYTE di al OQut Code[6] ; /*di al -out-code to access an external |ine */
} DI AL_ENVAR;

If getit iSTRUE, read the contents of the D$X environment variable into* pev. If the environment variable
does not exist it is created with default values as follows:

pev- >t oneLengt hTi cks=8;

pev->del ayLengt hTi cks=8;

pev->pauselLengt hTi cks=48;

p_scpy(&pev->di al Qut Code[0],"9,"); /* fromthe SYS DI AL_OUT systemresource */
If getit iSFALSE, write* pev to the D$X environment variable.

Note that asystem tick is 1/32 second.

WS FORMAT_DIALOG Run the set format dialog

VO D ws_format _di al og(I NT flags);

Run the system dialog to set the eval uation format preferences.

16-11

OBJECT ORIENTED PROGRAMMING GUIDE

Set "BEvaluate” format

+Fixed+

‘Decimal places 2
‘Trigonometryunits Degrees

If flagsisTRUE, run the dialog to set the general evaluate preferences, as shown in the above diagram,
otherwise run it to set the preferences for the calculator.

On exiting the dialog, except by pressing Esc, the preferences are written to the M$V environment variable.
See the description of the EVALDLG system dialog class for further details.

w WS_ALERT Interface to wsAlert
VO D ws_al ert (TEXT *t1, TEXT *t2);
Ensures the magic static Dat Locked iSTRUE and then call:
wsAl er t W WS_ALERT_CLI ENT, t1,t2,0, 0, 0);
On return from thiscall, Dat Locked isrestored to itsoriginal value.

Thismethod is called from the HW MVAN am not i f yer r method asthe final fail-safe stage of the system's
error reporting mechanism.

WS _ENS_PRINT_CONTEXT Ensure print context data exists

VOI D ws_ens_print_context (VO D);

If it does not already exist, create and initialise an instance of the FORM PRI NTER class, writing its handle to
wserv. printer.

The method does nothing if wser v. printer iSNOtNULL.

WS_EDIT_PRINT_CONTEXT Run print setup dialog

VO D ws_edit_print_context (VO D);

Send aWs_ENS_PRI NT_CONTEXT message and then run the print setup dialog as, for example, is used by
the Print setup command in Word's Special menu:

-
-

Print setup
A4
‘Margins... 1.25,1.25, 1.25, 1.25
‘Header...
‘Footer... “P
‘Paging control... 1,No, 1,23
‘Printer model... Canon BJ-18e
‘Printer device... Parallel

Thisdialog is used to review and/or modify the print context data stored in the application's instance of the
PRI NTER class, whose handleisinwser v. pri nt er . See the description of the PRNCTRL system dialog
classfor further details.

WS _EDIT_PDEV_SETUP Run printer configuration dialog

VO D ws_edit_pdev_setup(VO D);

Run the dialog to set up the system-wide printer device configuration, as for the Printer setup command in
the System Screen's Special menu:

16-12

16 USING THE SYSTEM COMPONENTS

-

Printer configuration

‘Printer device +Parallel +

Serial characteristics ...
Serial handshaking ...
File: Name
Disk
‘Units Inches
'‘Print preview... Z pages, Margins off

See the description of the PDEVDLG system dialog class for further details.

WS SENSE PDEV_TEXT Sense text for current printer device

VO D ws_sense_pdev_t ext (TEXT *buf);

Write as a zero terminated string, to the buffer pointed to by buf , the text that describes the current printer
device.

Thistext will be one of "Parallel", "Serial” or, if printing to file, the name and extension of the print file.

Replaceable methods

The methods described in this section are called by system code and are not intended to be called explicitly
by application code. They may be replaced in an application-specific subclass of WSERV.

WS DYN_INIT Application-specific initialisation
VO D ws_dyn_init (VO D);

All HWIM applications must replace this method to provide application-specific initialisation. The supplied
method does nothing.

Theinitialisation must minimally create and initialise a client window, and will generally create and initialise
further objects, particularly 'engine' objects that store and provide access to the application's data.

A file-based application should open or create the application's current file, according to the datastored in
Dat UsedPat hnamePt r and HW MVAN property, as described in the File-based Applicationschapter.

WS FOREGROUND Foreground message
VO D ws_foreground(U NT flag);

The application receives this message, withf | ag set to TRUE, when it becomes the foreground process. The
supplied method does nothing.

Thef | ag parameter is passed so that a subclasser may map thews_f or egr ound andws_backgr ound
methods to a single method function, the two cases being distinguished by the value of f | ag.

WS BACKGROUND Background message

VOl D ws_background(Ul NT fl ag);

The application receives this message, withf | ag set to FALSE, when it becomes a background process. The
supplied method does nothing.

Thef | ag parameter is passed so that a subclasser may map thews_f or egr ound andws_backgr ound
methods to a single method function, the two cases being distinguished by the value of f | ag.

16-13

CHAPTER 17

HWIM UTILITY FUNCTIONS

HWIM utility and convenience functions have been devel oped in response to a number of observations
and pressures:

The need to minimise memory used by application code.

The observation that alarge range of applications have many code fragments that are in common
use.

By formalising these code fragments into commonly available functions, application code can be made
easier to read and can achieve savingsin memory.

At first sight, the use of "free standing" functions seems to violate the most basic principles of object
oriented programming. Thisis not the case. They can legitimately be used where similar actions are done
repeatedly in various parts of the application code, even if that action involves the sending of messages.

For example, utility functions are very often used to send a standard message to system generated objects
such as the application manager which exist throughout the lifetime of an application.

Thereis nothing to stop adeveloper from writing his/her own utility functionsand is, in fact, encouraged to
do so. It is appropriate in a situation where similar pieces of code are used over and over again. Itis
particularly suitable where code involving the sending of a message to a particular object may be repeated.
Thereisno problem involved in encapsulating the sending of messages within utility functions.

The use of utility functions can save memory by:

allowing areduction in the number of parameters passed from application code. While this might
save one or two bytes per call, the total saving in memory across a whol e range of applications can
be substantial

avoiding the duplication of code fragments

The next sections describe the utility functions available for use by any HWIM application. Each section
describes a set of functions grouped under the following headings:

General utilities
Text management
User notification
Running adialog
Dialog box utilities

In many cases, the implementation of utility functionsisgivenin full or in skeleton form. Thiswill assist
developersto create their own utility/convenience functions.

Note that the HWIM utility functions are prototyped inhwim.h.

17-1

OBJECT ORIENTED PROGRAMMING GUIDE

General utilities

Asindicated by thetitle of this section, thisisagroup of miscellaneous functions with no connecting
theme.

p_true Return TRUE
INT p_true(VA D);
Thisisasimple function that returns the value TRUE.

Itisparticularly useful as adefault method for a class where the method must return asimple TRUE or
FALSE value.

For example, in the definition of the HWIM comman class, p_t r ue isassigned to the method
com accl _check which meansthat when the methodcom accl _check iscaled, p_t r ue isexecuted,
thus returning a value of TRUE

p_false Return FALSE

INT p_false(VOD);
Thisisasimple function that returns the value FALSE.

Itisparticularly useful as adefault method for a class where the method must return asimple TRUE or
FALSE value.

See the earlier description of p_t r ue for an example of how this could be implemented.

hDestroy Destroy an object
VO D hDestroy(VO D *hand);

Thisisa function which will destroy an object by sending it the DESTROY message:

psend2(hand, O_DESTROY) ;

The handle of the object to be destroyed must be passed as a parameter to this function. If the handleis
NULL, the function does nothing.

hinitVis Make a window visible
VO D hlnitVis(VO D *win);
This can be used in one of two ways depending on the current state of the window object with handlewi n:
if the window has not yet been initialised, then it will be both initialised and made visible
if thewindow has aready been initialised, then it will be made visible.

The function isimplemented by sending awN_VI SI BLE message to the window with handlewi n as shown
below. The handle passed as a parameter must point to an object instanced from the wi n classor a
subclass of wi n.

psend3(wi n, O W N_VI SI BLE, W_I NI TVS) ;

For further discussion on windows, see the Windows chapter.

hWservComSend Send command to command manager
VO D hWser vComSend(| NT comi d);

This utility simply sends the message with message (method) number coni d and the same message
(method) number as a parameter to the command manager.This isimplemented as shown below:

p_send3(w_ws->wserv.com com d, com d);

17-2

17 HWIM UTILITY FUNCTIONS

The additional comi d parameter that is passed with the message is for the convenience of the receiving
command manager method, which may choose to ignoreit.

Thisfunctionis particularly useful where anumber of methods are implemented using the same code.
Passing the method number as a parameter allows the code to identify the context of the call and to take
appropriate action if it so wishes.

For further discussion on the command manager, see the Commands and Command Menuschapter.

hEnsurePath Ensure path exists
VOl D hEnsur ePat h(TEXT *fname);

If the path indicated by the file specification at f nane does not exist, the function attempts to create the
required directory structure.

Thefile specification is parsed using the Plib functionp_f par se. If thisis successful, the directory
component of the parsed file specification is created, provided it does not already exist, using the Plib
function p_nkdi r .

No errors are reported. If thisfunction fails, this could be due to abad file specification in* f name or a
problem with the device/medium when attempting to create the directory itself.

For example, suppose f name contains the string:
" FI LES\ \ DOCS\ \ FRED. DOC"

and the default path is:
LOC:: M\

then the function will attempt to create the directory structure:
\ FI LES\ DOCS\

at node LOC:: ondevice M:

For further information on file specifications see the files chapter in the PLIB Reference manual.

Text management

This group of functionsis concerned with building text from various sources, displaying text in avariety of
contexts and with text manipulation.

hLoadResource Allocate cell and load resource
I NT hLoadResource(INT rid, VO D *ppdata);

Thisisaconvenience routine which allocates a cell of suitable length from the heap, loads the resource
referenced by the resourceidri d into the cell and returns the length of the loaded resource. The address of
thecell isplaced in * ppdat a.

The function isimplemented by sending anam | oad_r esour ce message to the application manager as
shown below:

p_send4(w_am O _AM LOAD_RESOURCE, ri d, ppdat a) ;
Remember that the address of the application manager object isfound in the magic static variablew_am

If an error occurs, the function callsp_| eave.

17-3

OBJECT ORIENTED PROGRAMMING GUIDE

hLoadResBuf Load resource into buffer
I NT hLoadResBuf (I NT rid, VO D *buf);

Thisis aconvenience routine which loads the resource referenced by the resourceidr i d into the buffer
pointed to by buf and returns the length of the loaded resource.

The function isimplemented by sending anam | oad_r es_buf message to the application manager as
shown below:

p_send4(w_am O _AM LOAD_RES BUF, ri d, buf);

It issimilar to the previously described functionhLoadr esour ce except that it isthe caller's responsibility
to provide the buffer and to ensure that it islarge enough to contain the loaded resource.

If an error occurs, the function callsp_| eave.

As an example, consider the following code fragment that could come from any typical window subclass
drawing method which, as part of its functionality, loads aresource string and printsit at a given point
within the window:

hLoadResBuf (sel f->resi d, &uf[0]);
p_supersend2(sel f, O WN_DRAW ;
gPrint Text (50, 50, &uf [0], p_sl en(&buf[0]);

The important point to note hereisthat buf must be large enough to hold the loaded resource string.

hLoadChlistResBuf Load choice list item into buffer
TEXT *hLoadChl i st ResBuf (I NT rid, |INT choice, TEXT *buf);
Thisisaconvenience routine which loads a single choice list item from a choice list resource into a buffer.

The choicelist resourceisidentified by the parameter r i d within aresource file while the parameter choi ce
identifies the particular choicelist item within the resource.

The function returns a pointer to the string's terminating zero.

Thefunction isimplemented by sending aws_| oad_chl i st _r es message to the window server object as
shown below:

return((TEXT *)p_send5(w_ws, O W§_LOAD _CHLI ST_RES, ri d, choi ce, buf);

It isthe caller'sresponsibility to ensure that the buffer provided is large enough to contain the loaded
choicelist item.

If an error occurs, the function callsp_| eave.

hErrs Generate error text
VO D hErrs(TEXT *buf, INT err);

Thisisaconvenience routine that writes the error text specified by the error number er r to the buffer at
buf .

If err isnegativeit isinterpreted as a system error number and the text is obtained by calling the Plib
function p_er r s; the buffer must be at least E_MAX_ERROR_TEXT_SI ZE bytes.

If err isnon-negativeit isassumed to refer to aresource string which isloaded from aresource file with
resourceider r - ERROR_RI D_OFFSET (seethe W N class definition). The buffer supplied must be large
enough to contain the maximum si ze string expected.

Because the resource id isgiven aser r - ERROR_RI D_OFFSET, then thismust evaluate to a number greater
than 1 in order to access resources within the application resource file. Consequently, er r must be greater
than ERROR_RI D_OFFSET + 1.

17-4

17 HWIM UTILITY FUNCTIONS

The function isimplemented asfollows:

{
if (err<0)
p_errs(buf,err);
el se
hLoadResBuf (err- ERROR_RI D_OFFSET, buf);
}

If an error occurs, the function callsp_| eave.

For further detail on resource files, see the chapter on Resource Files in this manual.

hAtob Generate formatted string
I NT hAt ob(TEXT *buf, INT rid, |INT *pargs);

Thisisauseful function which generates a zero terminated string in the buffer pointed to by buf and
returnsits length. The string is generated from aformat string and a number of arguments pointed to by
par gs. Theformat string isloaded from the resourceri d in aresourcefile.

For more detail on the structure of the format string, see the description of the PLIB functionp_at ob in the
PLIB Reference manual

There are anumber of important pointsto note:
the length of the format string in the resource file, when loaded, must not be greater than 80 bytes.

itisthe caller's responsibility to ensure that the buffer pointed to by buf islarge enough to contain
the generated string.

If an error occurs, the function callsp_| eave.

The following routine and code fragment together provide a simple example of the use of this function. For
the sake of argument, assumethatfi | e isastatic variable that contains the channel of an opened text file.

GLDEF_C CDECL Sanpl eRoutine(INT rid,INT arg,...)

{
INT len;

TEXT buf[25];

Il en = hAtob(&buf[0],rid, &rg);
pwite(file, &uf[0],Ien);

}

INT rid;
INT num

num = 65;
rid = RI D _OF_MY_FORMAT_STRI NG;
Sanpl eRouti ne(ri d, num num num num num num ;

Given that the format string in the resource file referenced by the resourceidRI D_OF_MY_FORMAT_STRI NG
contains the character sequence:

[% % % % %]
then the the following string of characters would be written to the text file:

[1000001 A 65 101 65 41]

17-5

OBJECT ORIENTED PROGRAMMING GUIDE

hAtos Generate formatted string, variable argument count
TEXT *hAt os(TEXT *buf, INT rid, ...);

Thisisauseful function which generates a zero terminated string in the buffer pointed to by buf and
returns a pointer to its zero terminator.The string is generated from aformat string and anumber of
arguments. The format string is|oaded from the resourcer i d in aresource file while the arguments are
interpreted as for the PLIB functionp_at os.

For more detail on the structure of the format string, see the description of the PLIB functionsp_at ob and
p_at os inthe PLIB Reference manual.

Aswith the functionhAt ob, described earlier, the sasme important points must be noted. To recap:
the length of the format string in the resource file, when loaded, must not be greater than 80 bytes.

itisthe caller'sresponsibility to ensure that the buffer pointed to by buf islarge enough to contain
the generated string.

If an error occurs, the function callsp_| eave.

For example, given that the format string in the resource file referenced by the resourceid
RI D_OF_MY_FORMAT_STRI NG contains the character sequence:

% % %d Y% Y% W
the effect of the following code fragment:
INT num

TEXT buf[23];
INT rid;

num = 65;

rid = RI D _OF_MY_FORMAT_STRI NG;

hAt os(&uf[0], rid, num num num num num num ;
isto build the string:

1000001 A 65 101 65 41

in the buffer at buf .

hAppendEllipsis Append ellipsis to text
VO D hAppendEl | i psi s(TEXT *p);

Thisisasimple convenience function that writesthe ellipsis character, Ws_SYMBOL_ELLI PSI S, followed by
azero terminator into the two bytes pointed to by p.

Theellipsis character is commonly used as an appendage to a choice list prompt to indicate that a
subsidiary dialog isavailable.

For exampl e the code fragment:

TEXT buf[5] = {"A",'B','C};
hAppendEl | i psi s(&buf[3]);

would result inbuf containing the four characters ABC... followed by the zero terminator.

hSetGTmode Set text mode
VOl D hSet GTnode(Ul NT t node) ;

This simple convenience function uses the window server functiongSet GC to set the text mode of the
current graphics context to that specified by t node. Possible values of t node are defined in the Graphics
Output chapter of the Window Server Reference manual.

17-6

17 HWIM UTILITY FUNCTIONS

For example, as part of the drawing method of awi n subclass, the following code fragment would create aa
permanent graphics context with default values and then change the textmode so that when writing text, the
1'sand O's of the font characters overwrite the destination area:

wval i dat eW n(sel f->win.id);

p_supersend2(sel f, O WN_DRAW ;

sel f->nywi n.gcid = gCreateGCO(sel f->win.id);
hSet GTnode(G_TRMODE_REPL) ;

gPri nt Text (50, 50, &uf[0], p_sl en(&buf[0]);
wrr ee(sel f->nywi n. gcid);

hSetGFont Set font
VOl D hSet GFont (Ul NT fid);

This simple convenience function uses the window server function gSet GC to set the text font of the
current graphics context to that specified by fi d. Possible valuesof f i d are defined in the Graphics
Output chapter of the Window Server Reference manual.

For example, as part of the drawing method of awi n subclass, the following code fragment would create aa
permanent graphics context with default values and then change the text font to the ROM based
monospaced font Ws_FONT_BASE+3:

wVal i dateW n(sel f->win.id);

p_supersend2(sel f, O WN_DRAW ;

sel f->nywi n.gcid = gCreateGCO(sel f->win.id);
hSet GFont (W5_FONT_BASE+3) ;

gPri nt Text (50, 50, &uf[0], p_sl en(&buf[0]);
wrree(sel f->nmywi n. gcid);

hSetGStyle Set text style

VO D hSet GStyl e(Ul NT style);

This simple convenience function uses the window server functiongSet GC to set the text style of the

current graphics context to that specified by st yl e. Possible values of st yl e are defined in the Graphics
Output chapter of the Window Server Reference manual.

For example, as part of the drawing method of awi n subclass, the following code fragment would create aa
permanent graphics context with default values and then change the text style so that text characters are
displayed in bold:

wval i dateW n(sel f->win.id);

p_supersend2(sel f, O WN_DRAW ;

sel f->nywi n.gcid = gCreateGCO(sel f->win.id);
hSet GSt yl e(G_STY_BOLD) ;

gPrint Text (50, 50, &uf [0], p_sl en(&buf[0]);
wkr ee(sel f->nmywi n. gcid);

hGetBWid Get normal text width for buffer

INT hGet BW d(TEXT *buf, INT Ien);

This function uses the window server functiongText W dt h to calculate and return the width, in pixels, of
thefirstl en charactersin the buffer pointed to by buf . This function assumes that the text would be
displayed using the current system font (i.e SYSTEM_FONT_| D) and anormal style (i.e G_STY_NORMAL).

17-7

OBJECT ORIENTED PROGRAMMING GUIDE

Thisisuseful for planning the size and positioning of text in relation to surrounding text and graphic
objects.

hGetSWid Get normal text width for string
I NT hGet SW d(TEXT *pzts);
Thisissimilar to the functionhGet BW d.

It calculates and returns the width, in pixels, of the zero terminated string pointed to by pzt s. Like
hGet BW d, thisfunction assumes that the text would be displayed using the current system font (i.e
SYSTEM _FONT_I D) and anormal style (i.e G_STY_NORMAL).

Thisfunction is useful for planning the size and positioning of text in relation to surrounding text and
graphic objects.

hGetBBWid Get bold text width for buffer
I NT hGet BBW d(TEXT *buf, INT len);

Thisissimilar to the functionhGet BW d in that it uses the window server functiongText W dt h to calculate
and return the width, in pixels, of thefirstl en charactersin the buffer pointed to by buf . This function
assumes that the text would be displayed using the font with idBOLD_FONT_I D and anormal style (i.e
G_STY_NORMAL).

Thisisuseful for planning the size and positioning of text in relation to surrounding text and graphic
objects.

User notification

Thisgroup of functionsis concerned with informing, warning and alerting the user in avariety of ways.

hinfoPrint Display an information message
VO D hinfoPrint(INT rid, ...);

Thisfunction prints an information message window in the bottom right hand corner of the screen for 2 to
2.5 seconds or until cancelled.

The zero terminated text of the message is generated from aformat string and the arguments which follow
the parameter ri d. The format string is loaded from the resourceri d in aresourcefile.

For more detail on the structure of the format string, see the description of the PLIB functionp_at ob inthe
PLIB Reference manual

There are anumber of important pointsto note:
the length of the format string in the resource file, when loaded, must not be greater than 80 bytes

if the generated text is greater thanw | NFO_MSG_MAX_LEN bytes then the message will appear
truncated

the generated text including the zero terminator must not, in any event, be greater than 80 bytes.
If an error occurs, p_I eave iscalled.
Thefollowing code fragment provides a simple example of the use of this function.

The string in the resource file referenced by the resourceidRI D_OF_MY_FORMAT_STRI NG containsthe 25
character sequence:

The nunbers are % and %

the effect of the following code fragment:

17-8

17 HWIM UTILITY FUNCTIONS

INT numl, nuni;

INT rid;
numl = 65;
nun2 = 66;

rid = RID_OF_MY_FORMAT_STRI NG,
hi nfoPrint(rid, numl, nun2);

isto display the message:
The nunbers are 65 and 66

in the bottom right hand corner of the screen.

hinfoPrintErr Display an error information message
VO D hinfoPrintErr(INT err);

Thisfunction prints an error information message window in the bottom right hand corner of the screen for 2
to 2.5 seconds or until cancelled.

Thetext of the message isrelated to the error number iner r and is obtained in exactly the same way as
described in the functionhEr r s; see the description of hEr r s for more information.

There are anumber of extra pointsto note:

if the generated text is greater thanw | NFO_MSG_MAX_LEN bytes then the message will appear
truncated

the generated text including the zero terminator must not, in any event, be greater than 80 bytes.

If an error occurs, p_I| eave iscalled.

hBusyPrint Display a busy message
VOl D hBusyPrint (I NT delay, INT rid, ...);

This function prints a flashing message window in the bottom left hand corner of the screen. The display of
the message can be delayed by the number of half-secondsspecified inthedel ay parameter; this can range
from 0to 63.

The zero terminated text of the message is generated from aformat string and the arguments which follow
the parameter ri d. Theformat string isloaded from the resourcer i d in aresourcefile.

The message may be removed by acall to the window server functionwCancel BusyMsg.

For more detail on the structure of the format string, see the description of the PLIB functionp_at ob in the
PLIB Reference manual

There are anumber of pointsto note:

the generated text including the zero terminator must not be greater than 30 bytes. (Note that thisis
less than the 80 bytes common for other functions)

the length of the format string in the resource file, when loaded, must not be greater than 80 bytes
If an error occurs, p_| eave iscalled.

A common use of aflashing message areain the bottom left hand corner of the screen isto display a"busy”
type messge to inform the user that the work in progress could take some time to compl ete.

hBeep Make a beep
VO D hBeep(VO D);

Thisisaconvenience function that makes a short beep sound suitable for accompanying an error
notification. It can, of course, be used wherever an application seesfit.

17-9

OBJECT ORIENTED PROGRAMMING GUIDE

The function isimplemented by making the following call:
p_sound(-5, 320);

The beep is sounded for a duration of 5 system ticks (that is 5/32 sec) at afrequency of 512/320 KHz (that is
16KHz).

Run a dialog

This group of functionsis concerned with starting some standard dialogs and launching dialogsin general.

hLaunchDial Launch a dialog
I NT hLaunchDi al (P_CATID cat, |INT class, DL_DATA *data);

Thisisaconvenience routine which loads, initialises and runs adialog. The parameter cat isthe category
number of the dialog class whilethe parameter cl ass isits class number.

The DL_DATA struct is defined in hwimman.g as:
typedef struct

{
UWORD i d; /* resource id of a DI ALOG resource*/

VO D *rbuf; /* address of result buffer, or NULL */
PR_DLGBOX **pdl g; /* address of where to write handle of dialog, or NULL
*
/ } DL_DATA;
The function isimplemented as shown below by sendinga0 Ws_DO DI AL message to the WSERV object.
p_send5(w_ws, O W5_DO DI AL, p_getlibh(cat), cl ass, data);

hLaunchDi al returnswhatever value that the method O Ws_DO DI AL returns. Thiswill be zero for dialogs
cancelled without the intervention of application code.

hConfirm Run a confirm dialog
INT hConfirm(INT rid,...);

Thisisaconvenience routine which presents a standard one line query dialog which returns a TRUE or
FALSE value. Thistype of dialog is often used to ask a user to confirm an intended action.

Thetext of the dialog is generated from aformat string and (optionally) a number of arguments. The format
string isloaded from the resourceri d in aresource file while the arguments (if any) are interpreted as for the
PLIB functionp_at os. Moreinformation onp_at os can be found in the PLIB Reference manual.

The function isimplemented as shown below by sending a0 Ws_QUERY_DI ALOG message to the WSERV
object.

p_send5(w_ws, O W§_QUERY_DI ALOG, O, ri d, &rid+1);

hConf i r mreturns whatever value that the method O Ws_QUERY_DI ALOG returns. Thiswill be TRUE if the
user confirmsthe action.

There are anumber of pointsto note:
the length of the format string in the resource file, when loaded, must not be greater than 80 bytes.
the resulting text string must not be greater than 100 bytes.

If the resulting text string is sufficiently large to force the width of the resulting dial og box to exceed the
width of the window, then a panic will result.

17-10

17 HWIM UTILITY FUNCTIONS

h2LineConfirm Run a two-line confirm dialog
I NT h2Li neConfirm(I NT secondrid, INT rid, ...);

Thisisaconvenience routine which presents atwo line query dialog which returns a TRUE or FALSE value.
Thistype of dialog is often used to ask a user to confirm an intended action.

Thefunction is very similar to the functionhConf i r m described earlier. Thefirst line of text of thedialogis
generated from aformat string and (optionally) a number of arguments. The format string isloaded from the
resourceri d in aresource file while the arguments (if any) areinterpreted as for the PLIB functionp_at os.
The second line of text isbasic text and is|oaded from the resource secondri d in aresourcefile.

The function isimplemented as shown below by sendingaO Ws_QUERY_DI ALOG message to the WSERV
object.

p_send5(w_ws, O W5_QUERY_DI ALOG, secondrid, rid, &id+1);

h2Li neConf i r mreturns whatever value that the method O_Ws_QUERY_DI ALOG returns. Thiswill be TRUE if
the user confirms the action.

There are anumber of pointsto note:
the length of the format string in the resource file, when loaded, must not be greater than 80 bytes.
the resulting text string must not be greater than 100 bytes.
the second line of text in the resource file must not be greater than 100 bytes.

If either of the resulting text stringsis sufficiently large to force the width of the resulting dialog box to
exceed the width of the window, then a panic will result.

hErrorDialog Run an error dialog
INT hErrorDialog(INT err, INT rid, ...);

Thisisaconvenience routine which presents an error dialog with text derived from the error number and a
resourcefile. It returns azero if the dialog was presented successfully. It returns a non-zero valueif the
dialog presentation failed due to an out of memory error, in which case the dialog remains to be cleaned up
(use the OLIB convenience functionc! _cl ean_| evel . For further information, see The CLEANUP Class
chapter in the OLIB Reference manual.).

Thetext derived from the resource fileis generated from aformat string and (optionally) a number of
arguments. The format string isloaded from the resourcer i d in aresource file while the arguments (if any)
areinterpreted asfor the PLIB functionp_at os.

The function isimplemented as shown below by sending a0 Ws_ERROR_DI ALOG message to the WSERV
object.

p_send5(w_ws, O W§_ERROR DI ALOG, err,rid, &id+1);
There are anumber of pointsto note:
the length of the format string in the resource file, when loaded, must not be greater than 80 bytes.
the text string resulting from the resource file must not be greater than 80 bytes.

Thistype of dialog is often used for the reporting of errors of amoderately serious nature; minor errors
should use hl nf oPri nt Er r or described earlier and more serious errors should use the application
manager'sam not i f y method.

17-11

OBJECT ORIENTED PROGRAMMING GUIDE

Dialog box utilities

The following utility functions are available for performing standard operations on the component controls
of adialog. They may be used directly by an application, or used as models for the construction of
application-specific utilities.

The code of each used utility function isincluded in the application. These functions have optimised calling
conventions and therefore offer amodest saving over the equivalent function supplied by the application
itself.

Note that these utilities assume that the dialog handle is stored in the magic static Dat Di al ogPt r. Thus
they may not be used with any dialog which contains the DLGBOX_NO_DDP flagindl gbox. f | ags.

hDIgSet Set an item
VOl D hDl gSet (UBYTE i ndex, VO D *pset);

Thisfunction is ageneralised way of setting data (or property) into the control of one of the components of
the current dialog and is used in the more specialised dialog box utility functions described later.

As stated in the introduction to this section, it is assumed that Dat Di al ogPt r pointsto the current dialog
object.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex value of 0). The parameter pset isassumed to point to the appropriate structure
containing the information to be set . The class which defines the referenced dial og box component control,
will have defined a0 WN_SET method and will "know" how to interpret the data pointed to by pset .

The function isimplemented by sending a0 _WN_SET message to the current dialog object as shown below:

p_send4(Dat Di al ogPtr, O WN_SET, i ndex, pset);

hDIlgSetText Set a text item
VOI D hDl gSet Text (UBYTE i ndex, TEXT *buf);

Thisfunction setstext into the control of one of the current dialog's components. The control is assumed to
be an instance of TEXTW N or a subclass.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex vaue of 0). The parameter buf isassumed to point to a zero terminated string
containing the text to be set.

Thisfunction isimplemented as shown below and note that it uses the more generalised function hDI gSet
described earlier.

GLDEF_C VO D hDI gSet Text (UBYTE i ndex, TEXT *buf)
{
SE_TEXTW N set t xt;
sett xt . buf =buf;
settxt.len=p_slen(settxt. buf);

settxt.flags=SE_TEXTW N_TEXT;
hDI gSet (i ndex, &settxt);

}

hDIgSetEdwin Set text in edit window
VO D hDl gSet Edwi n(UBYTE i ndex, Text *buf);

Thisfunction setstext into the control of one of the current dialog's components. The control is assumed to
be an instance of EDW N or a subclass.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex value of 0). The parameter buf isassumed to point to a zero terminated string
containing the text to be set.

17-12

17 HWIM UTILITY FUNCTIONS

This function isimplemented as shown below and note that it uses the more generalised functionhDl gSet
described earlier.

GLDEF_C VO D hDI gSet Edwi n(UBYTE i ndex, TEXT *buf)

{
SE_EDW N set;
set. buf =buf ;

set.|l en=p_slen(set.buf);
hDI gSet (i ndex, &set);
}

hDIgSetPrompt Set text in prompt window
VOl D hDl gSet Pronpt (UBYTE i ndex Text *buf);
This function setstext into the prompt of one of the current dialog's components.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex value of 0). The parameter buf isassumed to point to a zero terminated string
containing the prompt text to be set.

Thisfunction isimplemented as shown below and it may be of interest to know that the O_DL_SET_PROMPT
method uses the more generalised functionhDl gSet described earlier.

GLDEF_C VO D hDI gSet Pronpt (UBYTE i ndex, TEXT *buf)
SE_TEXTW N settxt;
set t xt. buf =buf;
settxt.l en=p_slen(settxt.buf);

settxt.flags=SE_TEXTW N_TEXT,
p_send4(Dat Di al ogPtr, O DL_SET_PROMPT, i ndex, &settxt);

}

hDIgSetChlist Set choice in choice list
VOl D hDI gSet Chli st (UBYTE i ndex, |NT nsel);

This function sets the choice number in a choice list control within one of the current dialog's components,
ultimately causing that item in thelist to be displayed (or highlighted if the wholelist is shown). The
parameter nsel holds the number of the choice to be set (where avalue of O refersto thefirst itemin the
choicelist).

The particular component within the current dialog isidentified by thei ndex parameter (the first component
isidentified by ani ndex value of 0) and is assumed to be an instance of (or asubclass of) CHLI ST.

This function isimplemented as shown below and note that it uses the more generalised functionhDI gSet
described earlier.

GLDEF_C VO D hDI gSet Chl i st (UBYTE i ndex, |NT nsel)
{
SE_CHLI ST set;
set. nsel =nsel ;

set.set_flags=SE_CHLI ST_NSEL;
hDI gSet (i ndex, &set);

}

hDIgSetChlistOn Set On/Off choice list to On
VOl D hDl gSet Chl i st On(UBYTE i ndex) ;

Thisfunction is aspecialised version of the functionhDl gSet Chl i st described earlier.

It sets the choice number in achoicelist control to 1.

The particular component within the current dialog isidentified by thei ndex parameter (the first component
isidentified by ani ndex value of 0) and is assumed to be an instance of CHLI ST or a subclass.

17-13

OBJECT ORIENTED PROGRAMMING GUIDE

Thisfunction can be used with any choicelist but is especially useful if used in conjunction with an Off/On
choice list (using the system resource SYS_OFFON_MENU) . If the current dialog has a component containing
this choice list, then using this function (with the appropriatei ndex) will set the choicelist to On.

This function isimplemented as shown below and note that it uses the more generalised function
hDI gSet Chl i st described earlier.

GLDEF_C VOI D hDI gSet Chl i st On(UBYTE i ndex)

{
hDI gSet Chl i st (i ndex, 1);
}

hDIgSetNcedit Set value of numeric editor
VOI D hDl gSet Ncedi t (UBYTE i ndex, Ul NT val ue);

Thisfunction sets avalue into the control of one of the current dialog's components. The control is
assumed to be an instance of the numeric editor (NCEDI T) or asubclass.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex value of 0).

The value passed to the function in the parameter val ue can be any valid Ul NT type.

Thisfunction isimplemented as shown below and note that it uses the more generalised function hDl gSet
described earlier.

GLDEF_C VO D hDl gSet Ncedi t (UBYTE i ndex, Ul NT val ue)
{
SE_NCEDI T set;

set.val ue=val ue;

set . fl ags=SE_NCEDI T_VALUE;
hDI gSet (i ndex, &set);

}

hDlgSetLledit Set latitude/longitude editor
VOI D hDl gSet LI edi t (UBYTE i ndex, |NT val ue);

Thisfunction sets avalue into the control of one of the current dialog's components. The control is
assumed to be an instance of the latitude/longitude editor (LLEDI T) or a subclass. Whether the dialog
control represents alatitude or alongitude depends on the way the editor isinitialised.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex value of 0).

Theval ue passed to the function should represent the number of minutes of latitude or longitude. A
positive value represents the number of minutesNorth or West while a negative val ue represents the number
of minutes South or East, respectively .

For alatitude, the magnitude of the value should be no greater than 5399 minutes (that is, 89 degrees and 59
minutes).For alongitude, the magnitude of the value should be no greater than 10799 minutes (that is, 179
degrees and 59 minutes). Larger values may be passsed but the editor will assume the appropriate maximum
value.

Thisfunction isimplemented as shown below and note that it uses the more generalised functionhDl gSet
described earlier.

GLDEF_C VO D hDI gSet LI edi t (UBYTE i ndex, Ul NT val ue)
{
SE_LLEDIT set;

set.val ue=val ue;
hDI gSet (i ndex, &set);
}

For example, if the third dialog component in the current dialog box contains a longitude editor control and
the fourth component contains alatitude editor control, then the code fragment:

17-14

17 HWIM UTILITY FUNCTIONS

hDl gSet Ll edi t (2,5110);
hDI gSet LI edi t (3, - 2010) ;

will set the respective editor valuesto:
85° 10' West and 33° 30' South.

hDIlgSetPtedit Set punctuation editor
VOl D hDl gSet Pt edi t (UBYTE i ndex, UBYTE ch);

This function sets avalue into the control of one of the current dialog's components. The control is
assumed to be an instance of the punctuation editor (PUNCTUED) or a subclass.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex value of 0).

The function allows the single character, passed in the parameter ch, to be set. Although an instance of a
PUNCTUED class restricts user-keyed input to a valid punctuation character, the value passed inch can be
any valid character acceptable to EDW N, the immediate superclass of PUNCTUED.

This function isimplemented as shown below and note that it uses the more generalised function
hDl gSet Edwi n described earlier.

GLDEF_C VO D hDI gSet Pt edi t (UBYTE i ndex, UBYTE ch)

{
I NT chx;

chx=ch;
hDl gSet Edwi n(i ndex, (TEXT *) (&chx));
}

For example, if thethird dialog component in the current dialog box contains a punctuation editor control,
then the following call would set the punctuation character to acomma:

hDl gSetPtedit(2,',"');

hDIlgSetFledit Set floating point editor
VOl D hDl gSet Fl edi t (UBYTE i ndex, DOUBLE *pval ue);

This function sets avalue into the control of one of the current dialog's components. The control is
assumed to be an instance of the floating point editor (FLEDI T) or a subclass.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex vaue of 0).

The function allows the floating point number, pointed to by the parameter pval ue, to be set. This must be
avalid double value otherwise the function does nothing.

This function isimplemented as shown below and note that it uses the more generalised functionhDl gSet
described earlier.

GLDEF_C VO D hDI gSet Fl edi t (UBYTE i ndex, DOUBLE *pval ue)

{
SE_FLTEDI T set;

p_fld(&set.current, pval ue);
set.set_flags=SE_FLTEDI T_CURRENT,;
hDI gSet (i ndex, &set);

}

17-15

OBJECT ORIENTED PROGRAMMING GUIDE

hDIlgSetDtedit Set date editor

VO D hDl gSet Dt edi t (UBYTE i ndex, ULONG val ue);

Thisfunction sets avalue into the control of one of the current dialog's components. The control is
assumed to be an instance of the date editor (DTEDI T) or a subclass.

The particular component within thedialog isidentified by thei ndex parameter (the first component is
identified by ani ndex value of 0).

The function allowsthe value passed in the parameter val ue, to be set. Thisisassumed to bein system
time format, that is, the number of seconds since 00:00:00, January 1st, 1970.

This function isimplemented as shown below and note that it uses the more generalised functionhDl gSet
described earlier.

GLDEF_C VO D hDI gSet Dt edi t (UBYTE i ndex, ULONG val ue)
{
SE DTEDI T set;
set.val ue=val ue;
set.fl ags=SE_DTEDI T_VALUE;

hDI gSet (i ndex, &set);
}

hDIlgSetRgedit Set range editor
VO D hDl gSet Rgedi t (UBYTE i ndex, Ul NT val uel, Ul NT val ue2);

This function sets values into the control of one of the current dialog's components. The control is assumed
to be an instance of the range editor (RGEDI T) or a subclass.

The particular component within thedialog isidentified by thei ndex parameter (the first component is
identified by ani ndex value of 0).

The function allows the upper and lower limits for the range passed in the parametersval uel andval ue2
respectively, to be set. The range editor is a subclass of the MFNE (multiple field numeric editor) class.

This function isimplemented as shown below and note that it uses the more generalised functionhDl gSet
described earlier.

GLDEF_C VO D hDI gSet Rgedi t (UBYTE i ndex, UINT valuel, U NT val ue2)
{
SE_RGEDI T set;
set.val ue[| X_RGEDI T_VALUE_1] =val uel,;
set.val ue[| X_RGEDI T_VALUE_2] =val ue2;
set.flags=SE_RGEDI T_VALUE_1| SE_RGEDI T_VALUE_2;

hDI gSet (i ndex, &set);
}

The symbols| X_RGEDI T_VALUE_1 and| X_RGEDI T_VALUE_2 aredefined in theincludefile rgedit.g.

hDIgSetTitleByRid Set dialog title
VO D hDl gSet Titl eByRi d(I NT rid);

The function setsthe title of the current dialog box to the zero terminated text referenced by the resourceid
ridinaresourcefile.

Thisfunction isimplemented as shown below. Thetitle of adialog box is always the first component of that
dialog box and, therefore, is always referenced by an index value of zero as demonstrated in the
implementation of hDI gSet Ti t | ebyRi d, shown below.

17-16

17 HWIM UTILITY FUNCTIONS

GLDEF_C VO D hDI gSet Ti t| eByRi d(I NT rid)
{
TEXT buf[60];

hLoadResBuf (rid, &uf[0]);
hDI gSet Text (0, &uf[0]);

}
A few pointsto note:
the appropriate text string in the resource file, when loaded, cannot be greater than 60 bytes.

if thetext string is sufficiently large to force the width of the resulting dialog box to exceed the
width of the window, then a panic will result.

hDIgSense Sense an item
VOl D hDl gSense(UBYTE i ndex, VOI D *psense);

Thisfunction is ageneralised way of sensing or retrieving data (or property) from the control of one of the
components of the current dialog and is used in the more specialised dialog box utility functions described
later.

As stated in the introduction to this section, it is assumed that Dat Di al ogPt r points to the current dialog
object.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex value of 0). The parameter psense isassumed to point to the appropriate structurein
memory into which the information is to be placed. The class which defines the referenced dialog box
component control will have defined a0_WN_SENSE method and will "know" how to interpret the data
structure pointed to by psense.

The function isimplemented by sending a0 WN_SENSE message to the current dialog object as shown
below:

p_send4(Dat Di al ogPtr, O WN_SENSE, i ndex, psense) ;

hDIgSenseEdwin Sense edit window
TEXT *hDI gSenseEdwi n(UBYTE i ndex) ;

This function senses the text from the control of one of the current dialog's components. The control is
assumed to be an instance of EDW N or a subclass.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex vaue of 0).

The function returns a pointer to a zero terminated string representing the text in the edit window.

This function isimplemented as shown below and note that it uses the more generalised function
hDl gSense described earlier.

GLDEF_C TEXT *hDI gSenseEdwi n(UBYTE i ndex)
{
SE_EDW N sense;

hDl gSense(i ndex, &ense);
return(sense. buf);

}

For example the following code fragment copies the text sensed from an edit window into another buffer; the
exampl e assumes that the edit window is contained in the second component in the current dialog box:

17-17

OBJECT ORIENTED PROGRAMMING GUIDE

TEXT buf [100] :

p_scpy(&buf [0], hDl gSenseEdwi n(1))

hDIgSenseChlist Sense achoice list
I NT hDl gSenseChli st (UBYTE i ndex);

This function senses the choice number of the currently highlighted/selected choice item in a choice list
control in acomponent of the current dialog and returns that value. A value of O refersto thefirst itemin the
choicelist.

The particular component within the current dialog isidentified by thei ndex parameter (the first component
isidentified by ani ndex value of 0). The control is assumed to be an instance of CHLI ST or a subclass.

Thisfunction isimplemented as shown below and note that it uses the more generalised function
hDI gSense described earlier.

GLDEF_C I NT hDI gSenseChl i st (UBYTE i ndex)
{
SE_CHLI ST sense;

hDI gSense(i ndex, &ense);
return(sense. nsel);

}

For example, the following code fragment sets text in an edit window depending on the current item selected
in the choicelist; the choicelist and the edit window being (for the sake of the example) in the current
diaog:

#define CHO CE_TEXT_YES 1
#define CHOl CE_TEXT_NO 2

TEXT buf[2];

buf[1] = "\0';

if (hDl gSenseChlist(2) == CHO CE_TEXT_YES)
buf[0] ="'Y';

el se
buf[0] = "N ;

hDI gSet Text (3, &uf[0]);

hDIgSenseNcedit Sense a numeric editor
Ul NT hDl gSenseNcedi t (UBYTE i ndex);

This function senses the value from the control of one of the current dialog's components. The control is
assumed to be an instance of the numeric editor (NCEDI T) or a subclass.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex value of 0).

The function returns the value currently held by the editor.

This function isimplemented as shown below and note that it uses the more generalised function
hDI gSense described earlier.

17-18

17 HWIM UTILITY FUNCTIONS

GLDEF_C UI NT hDI gSenseNcedi t (UBYTE i ndex)
SE_NCEDI T sense;

hDl gSense(i ndex, &ense);
return(sense. val ue);

}

hDIgSenseRgedit Sense arange editor
VOl D hDl gSenseRgedi t (UBYTE i ndex, UWORD *pval ues);

This function senses values from the control of one of the current dialog's components. The control is
assumed to be an instance of the range editor (RGEDI T) or a subclass.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex valueof 0).

The function senses the upper and lower limits of the range and places the two valuesinto the first two
words of memory pointed to by pval ues. Itisthe caller'sresponsibility to supply the two words of
memory. The range editor is a subclass of the MFNE (multiple field numeric editor) class.

This function isimplemented as shown below and note that it uses the more generalised function
hDl gSense described earlier.

GLDEF_C VO D hDI gSenseRgedi t (UBYTE i ndex, UWORD *pval ues)
{
SE_RGEDI T sense;
hDl gSense(i ndex, &ense);

*pval ues++=sense. val ue[| X_RGEDI T_VALUE_1] ;
*pval ues=sense. val ue[| X_RGEDI T_VALUE_2];

}
The symbols| X_RGEDI T_VALUE_1 andI| X_RGEDI T_VALUE_2 aredefined in theincludefile rgedit.qg.

hDIgSenseFledit Sense a floating point editor
VOl D hDl gSenseFl edi t (UBYTE i ndex, DOUBLE *pval ue);

This function senses the value from the control of one of the current dialog's components. The control is
assumed to be an instance of the floating point editor (FLEDI T) or a subclass.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex valueof 0).

The function senses the floating point value and placesit in the memory pointed to by pval ue. Itisthe
caller'sresponsibility to supply this memory location.

Thisfunction isimplemented as shown below and note that it uses the more generalised functionhDI gSet
described earlier.

GLDEF_C VO D hDl gSenseFl edi t (UBYTE i ndex, DOUBLE *pval ue)
{

hDl gSense(i ndex, pval ue);

}

hDIgSenselledit Sense a latitude/longitude editor
I NT hDl gSenselLl edi t (UBYTE i ndex);

This function senses a value from the control of one of the current dialog's components. The control is
assumed to be an instance of the latitude/longitude editor (LLEDI T) or a subclass. Whether the dialog
component represents alatitude or alongitude depends on the way the editor isinitialised.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex vaue of 0).

17-19

OBJECT ORIENTED PROGRAMMING GUIDE

The function returns the number of minutes of latitude or longitude. A positive value represents the number
of minutesNorth or West while a negative val ue represents the number of minutes South or East
respectively.

For example, areturned latitude value of -2010 means 33° 30" South while areturned longitude value of 5110
means 85° 10" West.

This function isimplemented as shown below and note that it uses the more generalised functionhDl gSet
described earlier.

GLDEF_C | NT hDI gSenselLl edi t (UBYTE i ndex)

{
SE LLEDI T sense;

hDl gSense(i ndex, &sense);
return(sense. val ue);

}

hDIgSensePtedit Sense a punctuation editor
I NT hDl gSensePt edi t (UBYTE i ndex);

This function senses a value from the control of one of the current dialog's components. The control is
assumed to be an instance of the punctuation editor (PUNCTUED) or a subclass.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex value of 0).

The function returns two bytes: the character currently contained within the punctuation editor and a
terminating zero

Thisfunction isimplemented as shown below and note that it uses the more generalised function
hDI gSenseEdwi n described earlier.

GLDEF_C Ul NT hDl gSensePt edi t (UBYTE i ndex)
{

return(*hDl gSenseEdwi n(i ndex));
}

hDIgSenseDtedit Sense a date editor
ULONG hDI gSenseDt edi t (UBYTE i ndex) ;

This function senses a val ue from the control of one of the current dialog's components. The control is
assumed to be an instance of the date editor (DTEDI T) or a subclass.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex value of 0).

The function returns the current val ue of the date editor. The returned valueisin system time format, that is,
the number of seconds since 00:00:00, January 1st, 1970.

This function isimplemented as shown below and note that it uses the more generalised function
hDI gSense described earlier.

GLDEF_C ULONG hDl gSenseDt edi t (UBYTE i ndex)

{
SE_DTEDI T sense;

hDl gSense(i ndex, &ense) ;
return(sense. val ue);

}

17-20

17 HWIM UTILITY FUNCTIONS

hDIgltemDim Dim/undim an item
VOl D hDl gl temDi m{ UBYTE i ndex, |NT flag);

This function changes an aspect of one of the current dialog's components. No assumption is made about
the type of component.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex value of 0).

The function sets the dimstatus of the dialog box component if avalue of TRUE is passed in parameter
f 1 ag, otherwiseit sets the undimmed status.

The dialog box class DLGBOX implements dimming by removing the bullet which normally precedesthe
component's prompt and blanks out the component's control.

Thisfunction isimplemented as shown below by sending the current dialog a0 _DL_| TEM DI Mmessage.

p_send4(Dat Di al ogPtr, O DL_I TEM DI M i ndex, fl ag) ;

hDIgltemLock Lock/unlock an item
VO D hDl gl tenmLock(UBYTE i ndex, |INT flag);

This function changes an aspect of one of the current dialog's components. No assumption is made about
the type of component.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex vaue of 0).

The function behavesin asimilar fashiontohDI gl t enDi min that it setsthe locked status of the dialog box
component if avalue of TRUE is passed in parameter f | ag, and sets the unlocked status otherwise.

The dialog box class DLGBOX implements locking in asimilar way to dimming by removing the bullet which
normally precedes the component's prompt However, it does not blank out the component's control but
does prevent it from being emphasised .

Thisfunction isimplemented as shown below by sending the current dialoga o DL_| TEM LOCK message.

p_send4(Dat Di al ogPtr, O DL_I TEM_LOCK, i ndex, fl ag) ;

hDIgTakeFocus Change focus
VO D hDl gTakeFocus(UBYTE i ndex) ;

This function changes an aspect of one of the current dialog's components. No assumption is made about
the type of component.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex vaue of 0).

The function changes the focus to the dialog box component identified by thei ndex parameter. In general,
this causes most keyboard activity to be directed to that component (with the usual exception of key and
modifier combinations set to be captured by other processes).

Thisfunction isimplemented as shown below by sending the current dialog a DL_ TAKE_FOCUS message.
p_send4(Dat Di al ogPtr, O DL_TAKE_FOCUS, i ndex) ;

Thisfunction, likethed! _t ake_f ocus method itself, is not suitable for being called from thedl _dyn_i ni t
method. If an application wishesto set the focus on initialisation, it should do so from areplaced

dl _set _si ze method. It may be called from any other method (such asdl _key) once the dialog has been
made visible.

17-21

OBJECT ORIENTED PROGRAMMING GUIDE

hDIgSetTwips Set floating point editor from twips value
VOl D hDI gSet Twi ps(UBYTE i ndex, Ul NT val ue);

Thisfunction sets avalue into the control of one of the current dialog's components. The control is
assumed to be an instance of the floating point editor (FLEDI T) or a subclass.

The particular component within thedialog isidentified by thei ndex parameter (the first component is
identified by ani ndex value of 0).

The number in the parameter val ue isassumed to bein twip units (that is, 1/1440 inch or 1/567 cm and
generally relevant to word processing type applications). The function converts this value into a floating
point measurement in the current measurement units, either inches or centimetres. The resulting floating
point number is set in the floating point editor.

hDIgSenseTwips Sense twips value from floating point editor
Ul NT hDI gSenseTwi ps(UBYTE i ndex) ;

This function senses the value from the control of one of the current dialog's components. The control is
assumed to be an instance of the floating point editor (FLEDI T) or a subclass.

The particular component within the dialog isidentified by thei ndex parameter (the first component is
identified by ani ndex value of 0).

The function senses the floating point value. Thisis assumed to contain a measurement in the current
measurement units, either inches or centimetres. This floating point value is converted into twip units (that
is, /1440 inch or 1/567 cm) and is returned by the function.

17-22

CHAPTER 18

APPLICATION DESIGN

It isclearly beyond the scope of this manual to discussin any detail the principles and practice of
object oriented design. There are anumber of books available on this topic - two that have proved
useful are:

Object Oriented Modeling and Design, by James Rumbaugh et a. (Prentice-Hall International, 1991)
Object Oriented Design with Applications by Grady Booch (Benjamin/Cummings, 1991)

This chapter offers some specific guidance on object oriented application design for the Series 3 and
Series 3a, using the Record application that is built into the Series 3a as an example. The full source
code of this application is supplied and may optionally be installed into a\sibosdk\record directory.
Onceinstalled it may be built by making\sibosdk\record the current directory ant typing:

make record

The Record application illustrates arange of design techniques and solutions that may usefully be
transferred to other applications. Y ou should not, of course, take thisto mean that Record is presented
as aperfect example of application design. Aswith any design, the end result is a compromise between
the ideal and the realistic. However, it isalso true that, as aresult of being designed, the applicationis
much more robust and comprehensible than it would otherwise have been.

Basic design

The design of an application should, in general, separate into two layers:
the user interface contains all aspects of the application that are dependent on a particular machine

the engine (otherwise known as the system model) contains the data and the associated
mechanisms that are particular to the application

-""'-\..-"\'

For Series 3 and Series 3a applications, the user interface contains objectsbasedon ,: _ i
. . . : L tuger interface,;
the HWIM library whereas engines do not. An engine may, however, optionally " :
use any of the classesin the OLIB library. T P
Asisillustrated in the accompanying class diagram, the user interface has access

to the engine, but there is no unsolicited communication in the opposite direction.

The engine has no detailed knowledge of the classes making the calls. In practice

this means that the user interface source files may include engine header files, but R A
that the engine should not include user interface header files. 7 endne
The division between user interface and engine gives rise to many advantages, o - ;
some of the more significant ones being: =7

separating the two aspects of the application reduces the complexity that has to be dealt with
at any one time by both the designer and the implementer

such separation helps the designer to reduce the number of interactions between the various
component objects, resulting in a'cleaner' and more maintainable application

18-1

OBJECT ORIENTED PROGRAMMING GUIDE

the engine does not need to be changed (or, at least, provides a good starting point) if the
application is ported to another machine with a different user interface

the engine may be tested independently - atest harness may be constructed to test all aspects
of the engine, without the complications of testing viathe user interface

A consequenceisthat it isin the programmer'sinterest to put as much of the application code as
possibleinto the engine, to improve portability and to protect the investment of effort that the code
represents.

A typical application

The following diagram shows the basic components of atypical application. Most of these comp onents
will be familiar from the discussion of the basic mechanisms of an object oriented application in the
Introduction chapter.

_—— P R e s . P
B - R - - , - ~— , - -

- . . - . -
ﬁ’ resouces . application - S window N . menubar o}
- - -
— manager —— zEvEl e :
I\IL-\.""-..L 1 - g . e T - I.
'-I . '__' N . - ! ™ . _;'
LT rachye <~ itrang .- 7 -
- - - - -
J.-____/"'-._ - ,--\"-_ Ja--\...__fhl._h
. - . - .
S client K S dislogbox S command
p . p p
" window ol L 1, manager ¢
-..-\1 ‘-'; "'-_' -'; - 5
! -7 thrang - 7 - - P
. A e
R | PR
. = -
< engine !

The diagram concentrates on those aspects of the design that are common to all applications and thus
omits some relationships that may be present in aparticular application. Itis, for example, likely that a
number of classes may make use of utility functions by sending messages to the application manager
and/or the window server object.

The handles of the application's instances of the application manager (HW MVAN) and the window server
object (WSERV), are globally accessible (viathe magic staticsw_amandw_ws respectively) and many
application classes may use them - for example, to use the system services that they provide. For clarity,
such relationships are not shown.

One of the more significant aspects of this diagram from a design viewpoint is the presence of the
engine and its relationships with other application classes. Asindicated, the engine is commonly
accessed by the client window, the command manager and the application's dialogs, but not, for
example, by HA MVAN Or WSERV.

The user interface

The HWIM library provides an effective design solution for many aspects of the user interface. As
described in this manual, the library provides the necessary base classes and mechanisms to process
the vast majority of messages that may be received from the window server process. For example,
HWIM provides aready-made sol ution for the processing of command options, selected either by an
accelerator keypress or from pull-down menus. Thus, much user interface design reduces to
considerations such as what commands options are required and what dial ogs are needed to support
them.

18-2

18 APPLICATION DESIGN

An exception to thisisthe client window itself, which is used to provide the top-level view of the data
within the engine. Apart from the positioning and draw/redraw mechanisms, the supplied HWIM
window classes provide very littlein terms of general client window design. Thereis support, from the
EDW N class, for windows that display editable text and thisis extended to cover printing and formatted
text by the FORM library. Apart from the material in the Edit Windows and Printing chapters, these
topics are beyond the scope of this manual.

The engine

An application's engine is specific to that application and, since it should be independent of the user
interface, HWIM provides no significant support. In most cases, engine design will therefore be amajor
component of the design of the whole application.

Many engine classes will be specific to a particular application, and will directly subclassrRoOT. It may,
however, prove useful to examine the classes supplied by the OLIB library, to seeif any of them could
be used or subclassed. These classes are described in the OLIB Reference manual.

The Record application

Record is areasonably simple, but non-trivial, application and, as such, isideally suited to being used
as an example of application design and implementation.

The application arose from a need to demonstrate the digital sound capability of the Series3ain an
intuitive and easy to use manner. The application was required to provide for the recording of custom
sounds to be attached to alarms and for the recording of voice "notes" for future recall, by playing back
the sound. For all uses, recording has to use the minimum of key presses. Playing the sound back has
also to be as easy as possible.

Constraints on human and machine resources meant that the application had to be capable of being
produced quickly and be as small as possible. It may be of interest to note that the entire devel opment,
including requirements, specification, design, implementation and testing took around 90 man-hours
and that the final application sizeis about 9 kbytes (against aninitial target of 4 kbytes).

Specification

Record is afile-based application for the Series 3a. It manipulates onefile at atime and keeps its current
file open. The application operates on sound files that by default are stored in\wve directories and have
Wwve extensions. Such files are suitable for attaching to alarms. The descriptions of Series 3a sound files
and the services that operate on them are given in the General System Services chapter of the PLIB
Reference manual. One significant feature of the sound servicesis that they make direct read and write
access to sound files. The Record application thus has no need to maintain an in-memory copy of its
current file.

The Record application obeys Switchfiles and Shutdown messages from the system screen. It is never
'busy’, even when recording or playing afile, so these messages can be received at any time.

The application has two persistent parameters, stored in environment variables:
the sound volume at which to play back files
the default file duration.

Top-level view

The large status window is on permanently.

Theclient window consists of adisplay of the attributes of the file being edited with buttons to perform
actionson thefile.

The permanently displayed attributes are:
the name component only of the open file

the duration of the sound in seconds

18-3

OBJECT ORIENTED PROGRAMMING GUIDE

the length of the file in bytes (so that the user is aware of the memory consumed by thisfile)
If appropriate, the following attributes are also shown:

the number of repeats

the duration of the trailing silence in seconds

thetotal playing time
The buttons are:

Record new (Tab) to record to anew file. A dialog is presented for the file name, the disk and
the maximum duration. A generated file name, of the form recordnn wherenn is01, 02, 03 etc.,
is presented by default. Theinitially suggested disk isthe default drive or, if that drive
contains other than aRAM SSD, Internal.

Record over (Space) to re-record to the file, overwriting its existing content. A dialog is
presented allowing the maximum duration to be set (the suggested duration is that of the
current file, rounded up to the next 2K bytes). The dialog contains awarning that the current
datawill be replaced.

Play (Enter) to play back thefile, including any repeats and trailing silences.
Playing
When playing the file, the three buttons are replaced by a single Stop (Esc) button. A bar graph isalso
presented, showing the elapsed playing time against the predicted total playing time.
Recording

After accepting the dialog presented by Record new or Record over, the three buttons are replaced by a
single Start recording (Space) button. Pressing Space starts the recording and the button is replaced by
asingle Stop (Esc) button. A bar graph is also presented, showing the elapsed record time against the
maximum duration. Pressing Esc terminates (but does not abort) the recording, resulting in a shorter
sound file than would otherwise be produced. If Escis not pressed, the recording terminates when the
specified maximum duration has been reached.

Running for the first time

Thefirst time the application is run, when no sound files exist under the icon, the application
immediately presents (over ablank client window) the dialog that is presented when you subsequently
press the Record new button. In this case the suggested file name isrecord (not record01) and
pressing Esc in this dialog causes the application to exit.

The same behaviour results, but with the specified file name, if you start the application by use of the
System Screen’'s New (Psion+N) option.

Menu

The menu commands are:

New file Essentially has the same effect as pressing the Record new button.

Openfile Presents adialog with standard controls to select anew current file.

Set repeat Presents adialog to set the repeat count (1 to 999) and the trailing silence (0 to
10.00) inthefile header. Thisisintended to be of usefor constructing custom
alarms.

Adjust foralarm Automatically sets the repeat and the trailing silence for a short recording (less
than seven seconds or so) so that it is compatible with being clipped at 15
seconds by the alarm server.

Set preferences Presents a dialog to set the volume of playback, the default duration and the
default disk for new files (the last two being subsequently used by the Record
to new file dialog).

18-4

18 APPLICATION DESIGN

Exit There is no need to save any changes- all changes are made to the file directly.

Design

The overall design of the Record application is shown in the following class diagram. Although the
diagramisfairly complex, it isinteresting to see that the essential design can be captured in asingle
diagram. The Record application represents about the highest level of complexity for which thisis
possible.

Despiteits complexity, the diagram is still asimplification and shows less than the whol e truth. It does
not mention, for example, accessto resource files and it omits a number of relationships of lesser
significance and whose presence would hinder rather than help with an understanding of the design.
The dialogs, for example, are generally run from within methods of the command manager, but including
all such relationships would render the diagram totally unreadable.

The diagram does, however, show al the really significant aspects of the design. As an example, it
accurately illustrates the relationships between user interface classes and the engine, although the
relationship between the RECNEwWdial og class and the engine is conceptual rather than actual (thisis
explained later in more detail). It is an important part of the design that the file services, digital sound
services and the environment variables are accessed via the engine and are not referenced directly by
any user interface component.

The relationships that are shown are drawn to represent the truth as closely as possible. The using
relationship between the window server object and the client window is drawn to show that itis
methods at the WSERYV level that send messages to the client window. This reflects the fact the only
relationshipsinvolved are those provided by system code. In contrast, as would be expected, the
engineisused only by application-specific subclasses.

- P - -
S but < bwin R
L7 rechut S) L0 recedst .
e |__ |I ' 1 f LT

" . ' : - - ' ,’ recnewdef K
- -

< timebar . - .- _
1 ' [ﬂ\ /\.-" oL T 4)
" i _—— e T _—— e T "I »
I . - v - e
\active T orecch) LT rechew =T
—_— .
. -

.

R S v

.
< recwsery "

B
Ny .’ ‘activety; © \" ST
IR ; N = © recopen
\ fm S setrep - V X
- . N, A - .
.
L5 recman) - e
- - 1 ' - . -
T o " ! PTTRT L
.* hwimman W"Ff | J—-% _ . setpref
i 1 R P t g !

. T - - T i _— 1 -— -

1

T

I

n

¢
-
.
i

- . - - ' L=
/‘l TecCom c‘:u:'——='='=======wh J
L v . -
T W_‘,—"’—M—' ; -
.- - o= e T
L7 camman o ! -

- - N - R . WaVEaD JI

1 - v . - -
- ' ©owvefile v '

1 - ~ + . '

e r ',au:twe":&
| —--' -
.L - Pl —-———

P -

- |:||E semvices . Enwronment ! s Dlgltal SDund
’ vanables '\.‘_ sErvices

Booch class diagram for record. app

The following sections describe a number of aspects of the application's design

The client window

The client window forms the application'stop-level view of the current file and initially presentsaview
similar to that shown below.

18-5

OBJECT ORIENTED PROGRAMMING GUIDE

Bugle
Bugle 1.1sec 9Kbyte
el I k]
IAJEBI
Record new Record over Play
Tab .

Mon 2

Whilerecording or playing afile the buttons are replaced by a single button and abar graphis
presented to indicate the elapsed time, asillustrated in the next diagram. This diagram also showsthe
additional line of information that is shown for afilethat is set to repeat and/or hastrailing silence.

Bugle

Bugle 1.1 sec 9Kbyte

Repeats:9 Trailing silence: 8.2 sec Total: 15.2 sec

HMon 25

Thefollowing diagram shows the application when it is paused before making a recording, with another
single button being visible.

Recordd?

RecordBd?2

Start recording

The client window thus has, at various times, to display one or two lines of text, one or more of a set of
five buttons, in various positions, and possibly a bar graph.

The client window maintains two text strings (the second of which may be anull string) for centred
display at fixed vertical offsets whenever awn_dr aw messageis received.

In contrast, the bar graph and the five possible buttons are component objects of the client window and
each of them contains the knowledge of its size and its position within the (fixed size) client window.
Furthermore, each of these components contains arecord of whether it isvisible or not. Thus the client
window does not need to maintain arecord of which set of componentsisvisible at any onetime. An
operation, such as pressing the Play button only needs to set the visibility of the appropriate
components. On receipt of awn_dr aw message, the client window always sends all six components an
appropriate drawing message. Each component either acts upon or ignores this message, according to
itsown internal state. The following object diagram illustrates the drawing mechanism, in response to a
WN_REDRAWMessage from the window server object. The same sequence is used for drawing that is
initiated by the client window itself.

18-6

18 APPLICATION DESIGN

wi_redraw
—=

The client window thus has no direct knowledge of which buttons are visible. It must, however,

respond to a set of keypresses that correspond to the buttons that are on display. Record accomplishes
this by taking advantage of the keyboard filtering mechanism (see the Keyboard filters section of the
Using the System Components chapter) to divert the processing of keypresses.

Inits normal, three-button, state, keys are processed by the client window'swn_key method, in the
normal way. When it switchesto either of the other two states, not only is adifferent set of buttons
made visible, but afilter is set, redirecting key processing to one of two alternate key processing
methods - either cl _sound_filter orcl _pause_filter. Thechange of state actions are performed
by the client window'scl _updat e, cl _begi n_sound andcl _pause methods. Note that these two
methods return WN_KEY_ CHANGED, thus ensuring that interaction with the menu bar is disabled in the
filtered states. Record uses negative valuesfor wser v. fi | met hod so that Help is still available while
keys are being filtered.

It isworth noting that the behaviour in each of the two filtered statesis very similar to what could
alternatively have been achieved by presenting adialog. The decision to simulate dialog behaviour
rather than to use dialogs for these states was largely based on cosmetic considerations.

The bar graph

Whilerecording or playing afile, Record displays an animated bar graph to show the progress against
the predicted total time for the operation. Since the sound services provide no information regarding
their progress, the bar graph animation has to be performed independently of the sound recording or
playback.

The TI MEBAR class therefore takes only asingleitem of external data - the total predicted time for the
operation. It uses the free-running counter (FRC:) device in its repeating mode to ensure accurate
synchronisation of the animation with the sound services.

Sincethe FRC: deviceisascarceresource, it isessential that Record releases it as soon as possible.
The deviceistherefore opened every timeit is used, and closed on completion of every record or
playback operation. It is particularly important to ensure that an error condition does not |eave the FRC:
device open, so its closing is made an essential part of the application’s error-handling (see The
application manager, later in this chapter).

The engine

Record's engine is a static instance of the RECENG class, created on initialisation of the application and
remaining in existence for the application’'s lifetime. This need not be the casein all applications- in
many cases it may be appropriate to represent, say, a change of the application'sfile by destruction and
recreation of the engine.

RECENG centralises access to and manipulation of the data associated with the application's current file.
Its handleis globally available (viathe global static variabler eceng) so that it may be referenced by
any object in the user interface. The classes that actually use the engine are asindicated in the earlier
application class diagram.

18-7

OBJECT ORIENTED PROGRAMMING GUIDE

The engine owns instances of the WEFI LE and WAVEAO classes that respectively represent the current
file and the record/playback process. All access to these classesis via RECENG methods. This reduces
the engine's 'surface area’, by avoiding the need for any other object to be aware of the existence of
these two instances. Note that some engine methods add little value (see, for example, the
eng_sense_fi | e method that sensesthe file data held by WEFI LE) and exist simply in order to
delegate the action to a component. Although thisresultsin asmall increase in the size of the
application, thisis outweighed by the design advantages that it brings.

The essentials of the sound-playing mechanismisillustrated in the following object diagram. Playing is
initialised by pressing the Play button in the client window, which causes an ENG_SOUND_PLAY
message to be sent to the engine.

gound_play
—
[R

reccl Teceng

begin_zsound
update

lay
dl:nne_play":\\?“

7

genze_info
zenze_fhame

Waveao

The name and total sound duration of the current file are sensed by means of WE_SENSE_FNAME and
WVE_SENSE_I NFO messages to WEFI LE and the name is passed to WAVEAO in aW/_PLAY message to
initiate the sound. The engine sends aCL_BEG N_SOUND message to the client window (see later) to
cause it to change the button display and to initialise and make visible the bar graph.

WAVEAOQ s an active object which breaks up the playing of thefileinto aseries of sections, allowing the
application to continue to respond to keypresses (to abort the playing of the sound) and to update the
growing bar graph (another active object). When WAVEAO compl etes the playing of thefile it sends an
ENG_DONE_PLAY message to the engine which, in turn, sends a CL_UPDATE message to the client
window, causing it to revert to its three-button display.

An engine should have no knowledge of user interface objects and certainly should not send them
unsolicited messages. The design of the Record engine, however, requires the engine to send
messages to the client window in response, for example, to the receipt of an ENG_SOUND_PLAY message.
This apparent conflict isresolved by passing the client window's handle, and the message numbers of
the reguired messages, to the engine as parameters. The parameters are normally sent to the engine (as
in this case) with itsinitialisation message and are stored in the engine's property. The message can
then be sent at alater time, with no knowledge of either the target object or the meaning of the message
that is being sent. The engine thus preservesitsignorance of, and independence from, user interface
classes. The special nature of thistype of messagesisindicated by the use of adotted arrow in the
above object diagram.

Recording to anew file or re-recording an existing file broadly follow the same pattern. The major
apparent difference in the mechanism arises from the fact that these two operations are also available as
command menu options. Theinitiation of these operations from the client window therefore shares code
with the corresponding command manager methods, but the principles remain the same. Before
recording to afile starts, the engine deletes any existing file of the same name.

Dialogs

Aswith the majority of applications, thereis very little design associated with Record's dial ogs since
they are largely constrained by the system-supplied mechanisms.

18-8

18 APPLICATION DESIGN

- . -

I N -
L4 setrep S setpref
rl

The STREP and SETPREF classes, respectively used by the Set repeats and Set preferences menu
options are typical subclasses of DLGBOX, replacingthed! _dyn_i nit anddl _key methods. As
indicated in the above class diagram, both classes send messages to the engine to sense and set the
relevant data.

-
e a T

. -
. + dighox /}
,qﬁ__f‘/‘ \ e PESUTE
. : recopen [. Y rechew : Lt recol ;’
'\- . 1
- il
. v
3 -
b - -"
4 e
o recnewdef E : rece:-ust :

Thefile-related dialog classes, RECOPEN, RECNEW RECNEWDEF and RECEXI ST, are related as shownin
the above class diagram. The RECOPEN dial og class reports a sel ected file name by means of aresult
buffer, pointed to by an item of dialog box property, dl gbox. r buf . It thus has no direct using
relationship with any other classin the application.

The other three dial ogs are associated with recording to afile. Thereis a conceptual relationship
between these dial ogs and the engine, since the current file name is found by means of a message sent
(by the command manager) to the engine. Thisinitial file nameis passed to the dialogs by use of aresult
buffer, so the link to the engine is not represented in the above class diagram (although it is shownin
the more conceptually orientated overall class diagram shown at the start of the Design section). All
these dialogsinitiate recording to the file by sending a CL_PAUSE message to the client window.

The application manager

On error, Record is designed to return to its base state, as on first entry to the application.

Record's application manager subclassesHW MVAN to replace theam cl ean_up method. This method
iscalled by system code as part of the standard recovery from an error condition (that has caused a call
top_| eave). Itspurposeisto assist roll-back to a safe state by freeing any resources that have been
allocated since the application was last in a secure state. For further details see The CLEANUP Class
and the description of theam cl ean_up method in The APPMAN Application Manager Class, both of
which chapters appear in the OLIB Reference manual.

The replacement method adds value by also performing all central generalised error recovery needed for
any error condition. Its actionsinclude, for example, clearing the value of wser v->fi | t er and sending

18-9

OBJECT ORIENTED PROGRAMMING GUIDE

aTB_STOP message to the client window's bar graph (to ensure the release of the FRC: device). All
these actions are guaranteed harmlessiif they are performed in a case when they are not needed.

Thisuse of theam cl ean_up method may not be so convenient in amore complex application wherea
variety of more specific error recovery procedures may be needed.

18-10

APPENDIX A

CATEGORY FILES

A category file contains the class definitions for all the subclasses provided by an image or dynamic library
file. It is expected to have a .cat file name extension.

The category file defines the group of classes that form an object oriented category. Object oriented classes
and categories are explained in the Introduction chapter of this manual and in the Object Oriented
Programming chapter of the PLIB Reference manual.

A category fileisthe input to the category translator tool, ctran.exe, which generates a number of files, as
described later inin this chapter.

Category file content
The content of a category fileis best explained in conjunction with the following example:

A denonstration cat file
| MAGE deno

! External reference to OLIB library
EXTERNAL olib

I NCLUDE p_std. h
| NCLUDE p_object.h

I NCLUDE varray. g required for know edge of VAFLAT
CLASS dunmy r oot the class name and its superclass
Dummy cl ass definition
as an illustration only
Met hods foll ow. .
REPLACE destr oy free buffer and supersend
ADD dm_init create VAFLAT conponent and allocate buffer
DEFER dm sub defined by a subcl ass..
CONSTANTS auxiliary symbolic constants
{

! for the buffer
DUMMY_BUF_SI ZE 128 al |l ocated buffer size
! for the VAFLAT conponent

DUMMY_GRAN 16
TYPES contains auxiliary structs
{
typedef struct /* comments here are exceptional */
{
TEXT *buf; pointer to allocated buffer
UWORD | en;
} DUMMY_BUF
}
PROPERTY 1

{

PR_VAFLAT *array; the conmponent VAFLAT instance
DUMMY_BUF buf fer;

}

OBJECT ORIENTED PROGRAMMING GUIDE

CLASS sub dunmy
Subcl ass of dummy

{
REPLACE dm sub ..so0 that's what it does
}

Thisexampleis copiously commented, to illustrate where comments are allowed. The general rules are:

any number of lines of comment text may be placed at the start of thefile, or in the linesimmediately
following a CLASS declaration

any line starting with an exclamation mark, optionally preceded by whitespace, isignored

trailing comment text may be placed on any line (except for at ypedef struct lineinthe TYPES
section) provided it is separated by whitespace from significant content. The whole of at ypedef
struct lineisoutput to the .g file. Any comment in thisline must, therefore, be suitable for
inclusionin aC sourcefile.

Not counting comment lines, the structure of a category fileis:
an | MAGE or LI BRARY statement
zero or more EXTERNAL statements
one or more | NCL UDE statements
zero or more CLASS statements
zero or more REQUI RE statements
The first non-comment line of the file declares the category type and name. The keyword must be one of:

| MAGE the executable will be an image (.img or .app) file
LI BRARY the executable will be adynamic library (.dyl) file

The category name, in this case, " denmn” , must be the same as the file name. This category file must,
therefore have the name demo.cat.

An EXTERNAL statement declares an external reference to adynamic library (DYL). The file may contain any
number of such external references. There must be an external referenceto aDY L before a category file class
definition may refer to, or subclass- directly or indirectly - aclassfrom that DYL.

The above exampl e subclasses ROOT, which isin the OLIB library and so must declare an EXTERNAL
referenceto OLIB. The effect isto include an external reference (.ext) file - in this case olib.ext - fromthe
designated include directory. External reference files are generated by the ctran.exe category translator, and
are described in the Category Translation chapter.

Since all subclasses are ultimately derived from the ROOT class,! all category files (except that for OLIB
itself) must contain an EXTERNAL referenceto OLIB.

An | NCLUDE statement includes a C language header file from the designated include directory. It isused in
asimilar way to#i ncl ude inaC sourcefile. All category files must | NCLUDE, either directly or indirectly,
p_std.h and p_object.h. The above example also| NCLUDES the header file varray.g (generated by the
category translation of the OLIB dynamic library category file and copied to the \sibosdk\include directory
during installation). Thisfile contains C #def i nes andt ypedef srelating to the OLIB variable array
classes, including the definition of the PR_VAFLAT struct.

Class definition

The cLASS keyword introduces a class definition. It is followed by the name of the class and then the name
of the parent superclass. A class name may be up to 15 characterslong. The above example defines the
class buMwy which isadirect subclass of the ROOT class. The layout of a class definition is significant; apart
from leading whitespace, which isignored, it must follow the pattern illustrated above - and in the class
definitions given elsewhere.

1Exceptionally, a category may defineits own root class and hence require no external referenceto OLIB.

A-2

APPENDIX A - CATEGORY FILES

The class definition of each subclass listsits additional methods and any additional property. It may also, as
in the above example, include the definitions of auxiliary structures and constants used by that class. There
are many examples of class definitions in the manuals describing object oriented libraries (the OLIB
Reference manual, for example).

The class definition may include any number of method declarations,2 introduced by the ADD, REPLACE or
DEFER keywords. Each of theseis followed by a method name, which may be up to 21 characterslong. The
method declarations may be followed by one of each of the CONSTANTS, TYPES and PROPERTY keywaords.

The method declaration keywords have the following meanings:

ADD declare amethod in addition to the methods provided by the superclass. The name
must be unique in relation to all other methods in this category, or any externally
referenced categories. Although not compulsory, the name conventionally starts with
ashort prefix related to the name of the classin which it isintroduced.

REPLACE declare amethod whose functionality isto replace that of a method supplied by a
superclass. The name must be that of an existing method in the superclass inheritance
tree.

DEFER declare an additional method as for ADD, except that the functionality of the method is

not defined by the current class and is expected to be provided by a subclass (using
REPLACE). A class containing DEFERred methods is known as an abstract class and, in
general, no instances of such aclasswill ever be created.3

It isrecommended that each method name be followed by a concise descriptive comment.

The CONSTANTS keyword introduces alist of symbolic constant definitions, each consisting of the symbol
name (conventionally in upper case) followed by the numeric value. The value may be an expression
involving symbolic constants defined earlier, either in the category fileitself, or in any included file. The
expression must not contain any whitespace.

The TYPES keyword introduces alist of C languaget ypedef struct definitions, whose layout should follow
that given in the example category file. (Many further examples may be found in the class definitions shown
for each classin, say, the OLIB Reference manual.)

The PROPERTY keyword introduces a list of data element declarations to be included in the struct that
defines the class property. The form of this struct is described in the Category Translation chapter.

This keyword may optionally be followed by aliteral number (expressions may not be used) that specifies
how many component items listed in the property are to be sent an automatic DESTROY message when an
instance of the classis destroyed. This assumesthat, for avalue nconp, the firstnconp itemsin the
additional property for the class are either NULL or handles (pointers to instances) of component objects.
The automatic destruction mechanism is described in the Object Oriented Programming chapter of the PLIB
Reference manual. It isimplemented inthe dest r oy method of the ROOT class, described in the OLIB
Reference manual. (See the Building a Dynamic Library chapter for a description of how a category may
supply its own ROOT class.)

In the above example, DUMMY's component VAFLAT instance will be automatically destroyed when bumwy
receives a DESTROY message.

Sub-category files

The contents of acategory file may be be divided between anumber of sub-category files, each of which
must have a .cl file name extension.

23ubject to amaximum of 255 methods, including those inherited from the superclasstree.

3Thereisno formal requirement for all DEFERred methods to be REPLACEd and it is acceptable to create an
instance of such a class provided that it is known that no DEFERred method will ever be called. See, for
example, the HWIM DLGBOX class.

OBJECT ORIENTED PROGRAMMING GUIDE

A sub-category file normally groups together anumber of related classes The OLIB category, for example,
is constructed from a number of sub-category files, including:

varray.cl containing the class definitions of the segmented buffer and variable array
classes described in the SGBUF Segmented Buffer Classand Variable
Arrays chapters of the OLIB Reference manual

edit.cl containing the class definitions of the classes described in the Editable
Documents chapter of the OLIB Reference manual

time.cl containing the single TI ME class definition, described in the TIME Class
chapter of the OLIB Reference manual

A sub-category fileisincluded in the category file by means of the REQUI RE keyword. For example, olib.cat
containstheline:

REQUI RE varray
to include the sub-category file varray.cl.
Not counting comment lines, the structure of a sub-category fileis:
aNAME statement
one or more | NCLUDE statements
one or more CLASS statements

A sub-category file must start with a NAME statement, specifying the sub-category name. This name must be
the same as the file name. Thus the timer.cl sub-category file must start with the declaration:

NANME ti mer

A sub-category file must not contain EXTERNAL statements and normally will not contain REQUI RE
keywords.

During translation of the category file (described in the Category Translation chapter) a separate generated
header (.g) fileis created for each sub-category file.

Using sub-category files

A category file may contain in-line class definitions as well as those contained in REQUI REd sub-category
files. For example, the OLIB category file (olib.cat) is.

4The relationship may be by function, by inheritance, or by any other means appropriate to a particular
application.

A-4

APPENDIX A - CATEGORY FILES

LI BRARY olib

I NCLUDE p_std. h
| NCLUDE p_object.h

CLASS r oot
The ultimate superclass - all other classes have root as their
ancestor.

{
ADD dest r oy
PROPERTY

P_OBJECT pc; class |ink
}
}
REQUI RE varray
REQUI RE appman
REQUI RE i pc
REQUI RE factive
REQUI RE tinme
REQUI RE ti mer
REQUIRE tlvfile
REQUI RE edi t

The OLIB category fileisunusual in that it contains no references to external categories. It therefore
contains Nno EXTERNAL statements and no | NCLUDES of any .g files.

The category translation of olib.cat generatesolib.g and afurther .g file (such asvarray.g) for each of the
sub-category files.

Theinformation in a.g file may include:
external category numbers
includes of .h and .g files
class numbers
method numbers
property structures
auxiliary class constants
auxiliary class structures
Thisinformation is mainly® required by:
C sourcefiles that provide the method functions for the classes in the category

C sourcefiles that provide the method functions for classes in another category, if they refer to
these classes (either by using or by subclassing)

The definitions of category numbers only appear in the .g file generated from the main category file (such as
olib.g). If thisfile contains no in-line class definitions, thisis effectively al that the .g file contains.

Theincludes of .h and .g filesresult from | NCLUDE statementsin either the main category file or a sub-
category file. The | NCLUDE statements may be tailored to the known dependencies between sub-categories.
For example, the OLIB appman.cl sub-category file starts asfollows:

NAME appman

I NCLUDE varray.g
I NCLUDE p_que. h
I NCLUDE p_gen. h
I NCLUDE p_file.h

5 Limited information may also be required by other files. For example, aresource file containing command
menu items will require the corresponding command manager method numbers.

OBJECT ORIENTED PROGRAMMING GUIDE

Note that appman.cl requires areference tovarray.g since the APPMAN class has a CLEANUP component,
and CLEANUP is a subclass of an array class. Although the classes in appman.cl depend onolib.g and also
requiretheinclusion of p_std.h and p_object.h, these do not need to be included explicitly. The classesin
varray.cl also depend on these files, sovarray.g can berelied on to perform the necessary includes. There
is automatic protection in.g files against including the same file more than once, so explicit inclusion of
these files, although not necessary, is harmless.

One of the major advantages of using sub-categories stems from the observation that a particular C source
file almost never needsto include all the category information. Judicious division of acategory file into sub-
categories to reduce the amount of category dataincluded in each of the source files can significantly
reduce the time and, more importantly, the memory usage involved in building an application.

In general, classes should be grouped according to their rel ationships (which imply dependencies) either
from subclassing or from usage as a component. For example, the classesin the OLIB varray.cl sub-
category file (with one exception) are general-purpose array classes, all of which have VAROOT in their
inheritance tree. In contrast, the classes in the appman.cl sub-category file are related either by being used
as components of the application manager, or by the intimate relationship between the application manager
and active objects.

Itis perfectly acceptable for a sub-category file to contain a single class definition, if that classisisolated
from other classes in the category. For example, the OLIB TI ME class has its own sub-category file, time.cl.
Inthiscaseitis particularly worthwhile since the TI ME class defines alarge number of constants and
structures.

Category translation

The category translator tool, ctran.exe, isthe principal tool used in the creation of a SIBO object oriented
program. It generates a number of output files from a singleinput category file (which may include a number
of external category references, header files and sub-category files).

Which output files are generated, and where they are put, is determined by flags passed to ctran.exe, whose
syntax is:

ctran <name> [-e<dir> -x[<dir>] -c[<dir>] -g[<dir>] -a[<dir>] -i[<dir>] -
I[<dir>] -s -k -v]

where:

<name> specifies the input category file name, assumed to have afile name extension
of .cat

-e<dir> specifies the directory from which files are included by the EXTERNAL and
I NCLUDE category file keywords

-x[<dir>] specifiesthat an external reference .ext file should be generated in the current
directory or, if given, the specified directory

-c[<dir>] specifiesthat a.c C language category source file should be generated in the
current directory or, if given, the specified directory

-g[<dir>] specifies that one or more .g C language include files should be generated in
the current directory or, if given, the specified directory

-a[<dir>] specifiesthat a.asmassembly language category source file should be
generated in the current directory or, if given, the specified directory. Thisflag
isnot normally set in the SDK development environment

Si[<dir>] specifiesthat one or more. i ng assembly language include files should be
generated in the current directory or, if given, the specified directory. Thisflag
isnot normally set in the SDK development environment

-1 [<dir>] specifiesthat a.lis human readable class report file should be generated in the

current directory or, if given, the specified directory

APPENDIX A - CATEGORY FILES

-s specifies that output is being generated for the SDK. Thisflag is normally set
in the SDK devel opment environment. Omitting this flag causes additional
information, irrelevant to the SDK development environment, to be included in
the output .c and .g files

-k specifiesthat a set of skeleton method function C source files are to be
generated. A separate source file is generated for each classin the category
file. The name of each fileisthe same asthe class name, and hasa.c
extension. Each fileis generated only if afile of that name does not already
exist, so there is no danger of accidentally overwriting an existing sourcefile.
A warning isgiven if thefile can not be created

-V specifies verbose on-screen progress reports

The various output files are best described with reference to the demonstration category file, listed at the
start of this chapter.

The .ext external reference file

The .ext file publishes the category name and information on the classes it contains. For each classin the
category thefile publishes:

the class name
the method names at their first appearance (when declared with ADD or DEFER)
flagsindicating if the subclass has additional property and if it supplies method functions

Thisfile should be included (by means of the EXTERNAL keyword) in other category filesthat make external
referencesto the category it describes. Thereis no need to generate thisfileif no other category makes such
references.

The demo.ext file generated from demo.cat is asfollows:

Generated by Ctran from denp. cat
| MAGE deno
CLASS dummy r oot

{

DECLARE dm i nit
DECLARE dm sub
HAS_METHOD
HAS_PROPERTY

}

CLASS sub dummy

{
HAS_METHOD
}

The .c Clanguage category source file

Thisfile contains the C language data definitions and initialisations for each classin the category. It isthe
source of the class descriptors which reside in the same code segment as the method functions (see also the
Object Oriented Programming chapter of the PLIB Reference manual).

Thisfile must always be generated, and must be compiled and linked into the application. Before linking, the
object file must be converted, by means of the ecobj.exe tool, to move the class descriptor datainto the
code segment. Thisis performed automatically by the ct.bat batch file described in the Building an
Application chapter.

The demo.c file generated from demo.cat is effectively asfollows:

OBJECT ORIENTED PROGRAMMING GUIDE

/* CGenerated by Ctran from denpo.cat */
#i ncl ude <deno. g>

/* External Superclass References */
#defi ne ERC_ROOT C_ROOT

/* Class dunmy */

GLREF_C VO D dummy_destroy();
GLREF_C VO D dunmmy_dm_init();
GLDEF_D struct

{
P_CLASS c;
VO D (*v[2])();
} c_dumy=
{

{1, (P_CLASS *) ERC_ROOT, si zeof (PR_DUMWY) , 0, Ox6b, 2, 1},
{
dunmy_destr oy,
dummy_dm.init
}
i

/* Class sub */
GLREF_C VO D sub_dm sub();
GLDEF_D struct

{

P_CLASS c;
VO D (*v[1])():
} c_sub=

{0, (P_CLASS *) & _dumy, si zeof (PR_SUB), 2, 0x6b, 1, 0},
{

sub_dm sub
}
s

/* Class Lookup Table */
GLDEF_D P_CLASS *Cl assTabl e[] =

{

(P_CLASS *) &c_dunmy,
(P_CLASS *)&c_sub

I

/* External Category Nane Table */
GLDEF_D struct

{
UWORD nunber ;

UBYTE nanes[1] [14];
} Ext Cat Table =
{1

{
{0 1" i, b, ., DY 'L 0.0,0,0,0,0)
}

}s

Note the expansion of the method function names to include the class name, as well as the declared method
name. This ensures that, even if a method replaces one supplied by a superclass, the method function
names are unique.

The .g C language include file

A .ginclude file contains the generated enumerated constants for the categories, classes and methods
declared in the category file, together with the generated structures that define the property of each class. In
addition it reproduces the auxiliary constant and structure definitions from the various classes.

The category numbers section lists the numbers used to refer to categories from within this category (for
example, when creating an instance withp_new). This section will always contain at |east one entry, with
value zero, for the local category. Therewill be one additional entry for each externally referenced category.

APPENDIX A - CATEGORY FILES

Unless building an assembly language program, a g filemust always be generated, and must be #i ncl uded
in any C sourcefilethat refersto any of the items mentioned above.

Note that the name of a symbolic constant representing a class number is derived from the class name with a
preceding" C_", and that of a method number is" 0 " followed by the declared method name.

The symbolic constant representing a class number is always of the form CAT_XXXX_YYYY, where XXXX is
the name of the local category and YYYY isthe name of the category to which the number refers. Thus the
DEMO category refersto itself viathe constant CAT_DEMO_DEMO and refers to the OLIB category by
CAT_DEMO_OLI B.

If the category file includes one or more sub-category (.cl) files, an additional .g fileis generated for each
sub-category. The content of each .g file corresponds to the content of the relevant category or sub-
category file. Note that the .g file corresponding to the main category (.cat) file does not contain information
relating to the content of any of the sub-category files.

The demo.g file generated from demo.cat is effectively asfollows:

/* Generated by Ctran from deno.cat */
#defi ne DEMO_G

#i f ndef P_STD H

#i ncl ude <p_std. h>
#endi f

#i f ndef P_OBJECT_H
#incl ude <p_object. h>
#endi f

#i f ndef VARRAY_G

#i ncl ude <varray. g>
#endi f

/* Category Nunbers */
#defi ne CAT_DEMO_DEMO 0O
#define CAT_DEMO OLIB 1

/* Class Numbers */
#defi ne C_DUMWY O
#define C_SUB 1

/* Method Nunbers */
#define O DM SUB 2
#define ODMINT 1

/* Constants for dunmy */
#defi ne DUMW_BUFFER_SI ZE 128
#defi ne DUMMY_GRAN 16

/* Types for dumry */
typedef struct

{

TEXT *buf;
UWORD | en;

} DUMWY_BUF

/* Property of dumy */
typedef struct
{
PR_VAFLAT *array;
DUMMY_BUF buf fer;
} PRS_DUMWY;
typedef struct pr_dumy

{

PRS_ROOT r oot ;
PRS_DUMWY dunmy;
} PR_DUMWY;

/* Property of sub */
typedef struct pr_sub

{

PRS_ROOT r oot ;
PRS_DUMWY dunmy;
} PR_SUB;

OBJECT ORIENTED PROGRAMMING GUIDE

The .asm assembly language category source file

Thisis an assembly language version of the .c category source file, described above. It contains the
assembly language data definitions and initialisations for each classin the category. It is the source of the
class descriptors which reside in the same code segment as the method functions (see also the Object
Oriented Programming chapter of the PLIB Reference manual).

Thisfile should only be generated, instead of the corresponding .c file, if the application iswrittenin
assembly language, in which case it must be assembled and linked into the application.

The .ing assembly language include file

A .ing fileisan assembly language version of the .g file, described above. It contains the generated
enumerated constants for the categories, classes and methods declared in the category file, together with
the generated structures that define the property of each class. In addition it reproduces the auxiliary
constant and structure definitions from the various classes.

It should only be generated if the application iswritten in assembly language, in which case it must be
I NCLUDEd in any assembly language source file that refersto any of the items mentioned above.

If the category file includes one or more sub-category (.cl) files, an additional .ing file is generated for each
sub-category. The content of each .ing file corresponds to the content of the relevant category or sub-
category file. Note that the .ing file corresponding to the main category (.cat) file does not contain
information relating to the content of any of the sub-category files.

The .lis category listing file

A lisfileisaplaintext listing, by sub-category, of all the classesin a category, together with their
inheritance trees and use of component classes. It may be useful to aid areview of how classes are grouped
into sub-categories, but is not otherwise required.

The demo.lisfile generated from demo.cat is asfollows:
Generated by Ctran from deno. cat

| MAGE deno

*kkkkkkkkk*k den-D *kkkkkkkkk*k

dunmy
Derived from root
Ref erences vafl at
Subcl assed by sub
sub
Derived from dunmy, r oot

The .c skeleton method function source file

A separate .c method function source file is generated for each class defined in either the category file or
any included sub-category files. The file name is the same as the class name of the class from whichitis
generated (but truncated to thefirst eight charactersin the case of long class names). Generating these files
avoids the repetitive typing involved in creating method function files by hand. It is expected that a set of
method function source files will be generated once only for each application.

A suitable batch file for creating the skeleton method function source filesisctskel .bat:

@cho off
ctran %l -e..\include\ -s -k

which isused as, for example:
ctskel deno

Thisbatch fileis copied into the \sibosdk\oopdemo directory on installation of the optional OOP component
of the SDK. It assumes that the SDK isinstalled on C: and should, of course, be modified as necessary for
an SDK installed on adifferent drive.

APPENDIX A - CATEGORY FILES

Each source file contains the required include files and a minimal skeleton for each method function that
must be supplied by the corresponding class.

Thefile generated from demo.cat for classbumwy isasfollows:

/*

dummy. c

Generated by Ctran from deno. cat
*/

#i ncl ude <deno. g>
#pragma METHOD_CALL

METHOD VO D dunmy_destroy(PR_SUB *sel f)

{
}

METHOD VO D dunmy_dm i nit (PR_SUB *sel f)
{
}

and that for classSUBIis:

/*

sub. c

Generated by Ctran from denp. cat
*/

#i ncl ude <deno. g>
#pragma METHOD_CALL

METHOD VOI D sub_dm sub(PR_SUB *sel f)

{
}

The general form of thesefilesis described in the Method Function Source Files chapter.

In the generated skeleton files, all method functions are declared as being Vol D and are supplied with only
thefirst, mandatory, parameter (being the handle of the classinstance). It isthe responsibility of the
programmer to make such modifications as are necessary to match the requirements of the method functions
of aparticular application.

APPENDIX B

METHOD FUNCTION SOURCE FILES

For each method included in the category file by means of either ADD or REPLACE, there must be a
corresponding method function declared in one of the source files that is compiled and linked into the
application.

A set of skeleton source filesis generated automatically from the category fileif a- k flag is passed to
ctran.exe, as described in the Category Translation chapter.

Thereis no formal requirement as to how method functions should be divided between a number of source
files. The most common scheme isto place all the method functions for a particular classin asingle source
file, using a separate file for each class (the generated skeleton files follow this scheme). Depending on
circumstances, however, the method functions of asingle class may be divided between two or more source
files: alternatively, asingle file may contain the method functions of more than one class. A viable
alternative to the above scheme isto group all the method functions of the classes of a single sub-category
file. The overriding aim should be to enhance the clarity and maintainability of the code.

The name of each method function is constructed by concatenating the class name with an underscore and
the method name. Thus, theva_t est method of the DI RLI ST class has a method function with the name
dirlist_va_test.Method function names may not be more than 31 characterslong - which is less than
the sum of the maximum lengths of the class name (15 characters) and the method name (21 characters).

Method function parameters

A method function may have from oneto four 16-bit parameters. These correspond, with the omission of the
message number, to the parameters passed to a message sending function (such asp_send). Note that the
message sending mechanism removes the method number from the list of parameters before calling the
appropriate method function.

Thefirst parameter of each method function must be the object handle, that is, the handle of the class
instance. This handle, which is apointer to the heap cell containing the instance property struct, is
conventionally given the namesel f . The name of the struct itself is derived by adding aleading PR_ to the
class name. Thisstruct is defined in the .g file corresponding to the .cat or .cl file that contains the
corresponding class definition. This.g file must therefore be #included in the appropriate source file(s).

Calling conventions and function order

Asdescribed in the Introduction chapter, a method function should normally be declared with the
METHOD_CALL calling convention (that is, preceded by a#pr agma METHOD_CALL statement). The only
exception iswhen amethod function is the target of both a message sending function (such asp_send or
p_ent ersend) andp_ent er . In this case the method function must be declared with the CDECL calling
convention.

A method function source file may include any number of local and/or global auxiliary functions. To avoid
the need to repeatedly switch between different calling conventions, it is recommended that functions
should appear in thefilein a standard order, for example:

local and global auxiliary functions, declared with LOCAL_C or GLDEF_C

local and global auxiliary functionsthat are the target of p_ent er , preceded by a
#pragma ENTER_CALL statement

method functions that are also the target of p_ent er , preceded by a#pr agma CDECL statement

the remaining method functions, preceded by a#pr agma METHOD_CALL statement

OBJECT ORIENTED PROGRAMMING GUIDE

Where possible, auxiliary functions should be written in ‘topological’ order, that is, a function should appear
before any reference to that function. Method functions, however, may appear in any order.

Sometimes, conflicting requirements mean that it is necessary to intermix functions of different calling
conventions. If, for example, you need to position an auxiliary function that isthe target of p_ent er
between other 'normal’ auxiliary functions, you can surround the function in question with the pair of
statements:

#pragma save, ENTER _CALL

#pragm restore

APPENDIX C

MECHANISMS

This appendix provides more detail than was presented in the Basic concepts section of the Introduction
chapter. In addition to giving further insight into the mechanismsinvolved in Psion's Object Oriented
system, it may prove useful while debugging errant applications.

Classes
A class defines the data (property) and behaviour (methods) of a particular type of object.
A classisimplemented as:

a set of method functions

aclass descriptor

The method functions are those functions that imp lement the class methods. The source code format of
these functionsis described in Appendix B.

Class descriptor

A class descriptor is a data structure that resides in the same code segment as the method functions of that
class. It contains information relevant to the class and consists of a header, followed by an array of 16-bit
code segment offsets to the method functions.

The C structure for the class descriptor header is defined as:

typedef
{
UWORD cat ;
struct p_class *super; /* superclass class */
UWORD | en; /* length of instance */
UWORD base; /* base function nunber */
UBYTE sig_6b; /* signature - should be 0x6b */
UBYTE num /* number of entries in vector table */
UBYTE nconp; /* nunber of conponent objects */
} P_CLASS;

The contents of aloaded and dynamically linked class descriptor is as follows:;

cat the handl e of the code segment that contains the superclass class descriptor

super the offset of the superclass class descriptor within segment cat , or zero if
thereis no superclass (i.e. thisis the class descriptor of aroot class)

I en the length of an instance of the class, including the lengths of inherited
property (used by, for example, p_new and p_new i bh to create an instance)

base the base method number corresponding to the first entry in the method table
that follows the class descriptor

si g_6b asignature (which should be 0x6b) to guard against a bad class reference

num the number of entriesin the method table

OBJECT ORIENTED PROGRAMMING GUIDE

nconp the number of component objects to be automatically destroyed

The following method table may contain "holes", represented by zeroes, corresponding to those method
functionsthat are supplied by a superclass. The following diagram illustrates atypical situation:

subclass superclass

__-.

header header

class 0 *a _‘

descriptor | 4. _‘ +b

+d

where +a, +b, +c and +d represent code segment offsets to method functions.

In this exampl e, the superclass provides two methods, whose method functions are at code segment offsets
+aand +b. The subclass replaces the second method of its superclass, with a method function at an offset
+cinitsown code segment. It also adds one new method, with method function code at an offset +d.

The first method of the subclassis supplied by its superclass, asindicated by the zero in the table of
offsets. Sending the corresponding message to the subclass will therefore cause the method function at
offset +ain the superclass code segment to be executed.

Note that the two classes may bein the same or different code segments. The resolution of the links
between classes in different code segmentsis part of the dynamic linkage mechanism, described | ater.

Object creation

Aninstance of aclassisimplemented asacell inthe heap and is created by callingp_new, f _new,
f_new i bh,p_new i bh,f _newsend or f _new i bhsend. The returned handleis a pointer to the heap cell.

The first two words of the cell contain the location of the class descriptor of the class of which the object is
an instance (in exactly the same way as for the superclass reference in alinked class descriptor).

The remainder of the cell contains the property (if any) of that class, including any property inherited from
its superclasses. The property contribution of a class always follows the property contribution inherited
from its superclass, asillustrated in the following diagram.

heap

handle ——— — class descriptor

property of C1

property of C2

property of C3

In this example, classCl is subclassesthe ROOT class, C2 subclasses C1 and C3 subclasses C2. The
property of C3 ismade up of the contribution from C3 itself and the contributionsinherited from C2, c1
and the ROOT class. The various contributions are ordered within the cell as shown.

The pointer to the class descriptor that heads the cell is set up when an instance of that classis created. It
is, infact, the property of the ROOT class, which isthe ultimate superclass of all classes.

APPENDIX C - MECHANISMS

The property contribution of aclass always follows the property contribution inherited from its superclass
and this ordering stays the same even if the class itself is susequently subclassed. Suppose, for example,
that class CLASS1 subclasses the class ROOT. The property of aninstance of CLASS1 is made up of the
contribution from CLASS1 itself and the contribution inherited from the ROOT class, as shown in the
following diagram:

handle points to: property of ROOT

property of CLASS1

If CLASS2 in turn subclasses CLASSL1, the property of an instance of CLASS2 iscomposed of the
contributions from three classes, ordered within the cell as shown below:

handle pointsto: property of ROOT

property of CLASS1

property of CLASS2

All the functions (p_new etc) that create an object initialise the property with zeros.

Categories

A category isformally defined as being a group of one or more classes. The classes are packaged into a
load modul e which, when loaded, occupies a single code segment. A code segment may not contain more
than one category. Thereis, therefore, a one-to-one correspondence between a category and the executable
code in asingle code segment.! Note that thisimplies that an application that occupies a single code
segment may not contain more than one category.

Category code segments are shared - thereis only one copy of a particular category in memory, however
many processes are executing it.

There are two main groups of categories:

Image categories contain an entry point at offset zero and are used to implement programs. The
name of a code segment that contains an image category has the extension .$sc. An image category
code segment is created by loading an executable usingp_execc (asdescribed in the chapter
Processes and I nter-Process Messaging in the Plib Reference manual).

Dynamic library categories (DY Ls) have no entry point, but contain classes that are referenced
from image categories and other DY Ls. The name of a code segment containing aDYL hasthe
extension .dyl. A DYL code segment is created by loading aDY L load module (which may be a
separate file or be embedded in an executable) usingp_| oadl i b or p_I oadfil el i b (these
functions are described in the Object Oriented Programming chapter of the PLIB Reference
manual).

Category handles and category numbers
A category handle identifies a category code segment, which may bein RAM or the ROM, asfollows:
if the category handleis positive, it isthe handle of a moveable RAM-based code segment
if the category handleis negative, it is the paragraph address of a ROM category code segment

A category code segment may also be identified by a category number. This number isknown at compile
time, whereas category handles are only known at run time. A category number is mainly used to create an
instance of an object classusingp_new, f _newor f _newsend although it is also used by the more obscure
functionsp_exact send, p_recl ass andp_cpycat .

1 Thisistruefor all SIBO executables, even if they do not use Object Oriented techniques and thus do not
explicitly define a category.

OBJECT ORIENTED PROGRAMMING GUIDE

A local category is defined as the category containing the code that makes a category reference; an external
category is a category other than the local category. Given these definitions, the local category always has
the category number zero. An external category number isthe index (from 1) into an array which, at run time
will contain handles to the external categories. The array existsin the local category code segment and is
generated from the list of EXTERNAL category referencesin a category file.

The value of an external category number thus depends on the composition and order of the external
category array inthe local category. Different categories will, in general, use different category numbersto
refer to the same external category. Because of thisfact, a category number should not be passed as a
parameter to an external method (for example, to create a component of variable class). When thereisa
requirement to pass a category as a parameter, the category handle rather than the category number should
be used. The category handle may always be obtained from the category number by callingp_get I i bh.

For example, consider a situation where an image category cat1.$sc makes external referencesto dynamic
libraries cat2.dyl and cat3.dyl, and cat2.dyl contains an external reference to cat3.dyl.

CAT1.$SC CAT2.DYL

1 >

Y

CAT3.DYL

The above diagram illustrates that in this case the external category number of cat3.dyl from catl.$scis2,
but from cat2.dyl itis 1.

Dynamic linkage
A reference to an external category by category number occurs when:
aclassfrom an external category is subclassed by the local category

the local category contains code that references an external category by a category number (most
likely for the purposes of creating an instance of an external classusingp_new, f _newor
f _newsend).

At run time, each reference by category number (such asin acall top_new) will generate areference by
category handle. Before this can be done, the calling category must be dynamically2 linked with all the
external categoriesto which it refers. External categories are referenced by their memory segment names and
it follows that, when a category is dynamically linked, all the referenced categories must be loaded.

Part of the linking processisthe resolution of thereferenceto a (possibly external) superclassin each class
descriptor in the category.

A mainimage category islinked by callingp_I i nkl i b(0) . For the predominant case where an application
isimplemented as a single image category referencing only ROM -based DY Ls (which do not need to be
explicitly loaded), the image may be linked by callingp_I i nkl i b at any time before the execution of code
involving an external category reference. Thecall top_I i nkl i b isnormally early innai n.

2 Theterm dynamic linkage is used because the link is made at run time. Thisis as opposed to normal
(static) linkage between code modules, which occurs at compile time (and is used to produce a category load
module, such as an executable or, indeed, aDYL).

C-4

APPENDIX C - MECHANISMS

A DYL referencing only categoriesthat are already loaded may be linked immediately after it isloaded. This
may be done by passing a suitable parameter value to the function that loadsthe DYL (either p_I oadl i b or
p_l oadfil el i b). For example, thistechnique is suitable when an application category loadsaDY L that
references only the ROM -based DY Ls and the application category.

In any case where a category (whether an image category or aDY L) contains references to categories that
are not yet loaded, it must not be linked immediately after loading. First, all other referenced categories must
be loaded. Only then can the category be linked by callingp_1 i nkl i b.

Referencing by category handle

It ispossible for a category to reference an external category by category handle - most commonly to create
an instance of an external classusingp_new i bh,f _newl i bh or f _new i bhsend or to call the more
obscurep_recl assbyhandl e.

In this case, the handle is normally obtained independently of dynamic linkage by one of the following
means:

the category handleis passed as a parameter to a method
from the segment name, by callingp_f i ndl i b (emulating dynamic linkage)

by the local category loadingaDYL usingp_l oadliborp_l oadfilelib

Message passing

In OOP terminology, sending a message to an object means calling a method function of the class or
superclass of which that object isan instance.

Method functions are identified by their method number, which must be between zero and 255. The method
number zero is normally reserved for the method that destroys the object (and its components, if any).

The most common way of sending amessageisto usep_send (or, more efficiently, one of thep_sendn
variants). This function must be supplied with the handle of the object instance (the address of acell in the
heap, asreturned by, say, p_newor p_new i bh) and the method number asitsfirst two parameters. Up to
three additional parameters may be supplied.

The p_send function locates the appropriate method function as follows:

it locates the class descriptor of which that object is an instance (using the category handle and
class segment offset at the beginning of the instance)

if the method number isin range of the method table that follows the class descriptor, and the
corresponding entry has anon-zero value, it calls the corresponding method function

otherwiseit locates the superclass class descriptor and repeats the above

If the process of trying to find a corresponding method in successive superclass class descriptors
(sometimes called superclass chaining) fails, the sending function panics with panic number 48.

The send will al'so panic (with panic number 55) if the category handle and class segment offset at the
beginning of the instance points to a class descriptor that does not have the correct signature. This catches,
amongst other things, the sending of a message to an object that has already been destroyed.

If successfully located, the method function is passed the object handle and the optional parameters (the
method number passed top_send is suppressed).

Within method function code (including any auxiliary functions) it is possible to 'send a message' by making
anormal function call to another method function, rather than using one of the above message-sending
functions. Thisisonly possible when:

the target method function isin the same category as the sending method

the target method ismonomor phic, that is, the functionality does not depend on the class of the
instance to which the message is sent

there areno callstop_super send in the target method

OBJECT ORIENTED PROGRAMMING GUIDE

Thistechnique may be used freely in application-specific classes, since such classes are totally within the
control of the application writer. When writing general-purpose library DY LS, one has to be more careful
about calling alocal method (rather than using a message sending function such asp_send). Making a
direct call removes any opportunity for subclassers to divert the send to a subclass method. However, in
some cases it may be positively desirableto restrict subclassersin thisway.

The message sending functions (p_send etc) represent the only mechanism for calling methods when:

the method ispolymor phic (where a particular send may call different method functions depending
on the class of the instance to which the method is being sent)

the method function isin an external category (for example, a ROM -based DY'L)
the method function containsacall top_super send

Calling conventions for method functions

A method function that is the target of any of the message sending functions (egp_send, p_super send or
p_ent er send) must use one of the following two calling conventions:

CDECL where the generated code will take the parameters off the stack

METHOD_CALL where the generated code will take the parameters from the registers (which is
more efficient)

Notethat if you call amethod function directly, the prototype must be visible to the caller and must, of
course, indicate the correct calling convention.

Recall, from the Error Handling chapter of the PLIB Reference manual, that the target of ap_ent er must
use one of :

CDECL where the generated code will take the parameters off the stack
ENTER_CALL where the generated code will take the parameters from the registers

Sincethe ENTER_CALL convention is different from the METHOD_CALL convention, amethod function that is
atarget of bothp_send (or any other message sending function, includingp_ent er send) andp_ent er
must be declared as CDECL.

Method parameters

In the calling convention of message sending functions, such asp_send, the function parameters are
passed in registers. In TopSpeed C this means that no more than five parameters may be passed (including
the object handle and the method number) with each parameter being limited to a 16-bit value.

Thus the parameters to a method sending function may not include the typesLONG, FLOAT or DOUBLE, and
structures may not be passed by value. The preferred technique isto pass the (16-bit) address of any of
these types of data.

In exceptional cases aLONG may be passed as two WORD parameters, where the first contains the least
significant word and the second contai ns the most significant word. A very small number of methodsin the
OLIB dynamic library, for example, use this technique.

INDEX

.rh extension, 15-2
ACLIST resource struct, 8-9

ACLIST_ARRAY resource struct, 8-9

AM_ADD_TASK, 16-3
AM_FINDIMG, 16-2, 16-3

AM_LOAD_RES BUF, 152, 16-3, 17-4
AM_LOAD_RESOURCE, 15-2, 16-2, 17-3

AM_NEW_FILENAME, 16-2
switching to anew file, 11-2
AM_NOTIFY, 16-4
AM_NOTIFYERR, 16-4
AM_RSCNAME, 16-2, 16-4
replacing, 15-1
AM_YIELD, 16-3
CHLIST resource struct, 8-6
CHOICE_ITEM resource struct, 8-6
COM_ACCL_CHECK, 17-2
example of use, 5-8,5-9
COM_EXIT
application termination, 11-3
Shutdown message, 11-3
COM_FILE_CHANGE
example of use, 11-1, 11-2, 11-3
COM_INIT
example of use, 5-10
COM_MENU
example, 5-6
example of use, 5-9
COMMAN class, 5-1
DatDiaogPtr, 8-1
DESTROY, 6-4, 6-10
Dialog
atering items, 7-19
bullet symbol, 8-3
flags, 7-3
prompt, 8-3
results, 7-20
simple, 7-18
title, 8-2
title - replacing, 8-5
Dialog controls
action list, 8-7
choicelist, 8-5
date/time editor, 8-16
edit box, 8-9
file name choicelist, 8-20
file name editor, 8-19
floating point editor, 8-15
integer numeric editor, 8-11
latitude/l ogitude editor, 8-18

long numeric editor, 8-10

pack selector, 8-19, 8-20

range numeric editor, 8-14

small action list, 8-8

text window, 8-2

word numeric editor, 8-13
DIALOG resource

example, 8-2
Didog resource

example, 7-17
Dialog resource structs, 7-3
DL_CHANGED, 7-15
DL_DIMMED_MESSAGE, 7-12
DL_DYN_INIT, 7-7

usage, 8-1
DL_FOCUS, 7-15
DL_HANDLE TO_INDEX, 7-8
DL_INDEX_TO HANDLE, 7-8
DL_INQ MINSIZE, 7-11
DL_ITEM_ADD, 7-10
DL_ITEM_APPEND, 7-11
DL_ITEM_DIM, 7-8
DL_ITEM_LOCK, 7-8
DL_ITEM_NEW, 7-15
DL_ITEM_REPLACE, 7-11
DL KEY,7-7,81
DL_LAUNCH_SUB, 7-15
DL_SET ITEM_FLAGS, 7-9
DL_SET_PROMPT, 7-9

example of use, 17-13
DL_SET_SIZE, 7-12
DL_TAKE_FOCUS, 7-9
DLGBOKX cdlass, 7-2
DLGBOX methods, 7-6
DTEDIT resource struct, 8-16
EDWIN resource struct, 8-9
FLTEDIT resource struct, 8-15
FNEDIT resource struct, 8-19
FNSELWN resource struct, 8-21
h2LineConfirm, 17-11
hAppendEllipsis, 17-6
hAtob, 17-5
hAtos, 17-6
hBeep, 17-9
hBusyPrint, 17-9
hConfirm, 17-10
hDestroy, 17-2
hDIgltemDim, 17-20
hDIgltemLock, 17-21
hDIgSense, 17-17
hDIgSenseChlist, 17-18
hDIgSenseDtedit, 17-20
hDIgSenseEdwin, 17-17
hDIgSenseFledit, 17-19
hDIlgSensel ledit, 17-19
hDIgSenseNcedit, 17-18
hDIgSensePtedit, 17-20
hDIlgSenseRgedit, 17-19
hDIgSenseTwips, 17-22
hDIgSet, 17-12
hDIgSetChlist, 17-13

HWIM REFERENCE

hDIgSetChlistOn, 17-13
hDIgSetDtedit, 17-16
hDIgSetEdwin, 17-12
hDIgSetFledit, 17-15
hDIgSetLledit, 17-14
hDIgSetNcedit, 17-14
hDIgSetPrompt, 17-13
hDIgSetPtedit, 17-15
hDIgSetRgedit, 17-16
hDIgSetText, 17-12
hDIgSetTitleByRid, 17-17
hDIgSetTwips, 17-21
hDIgTakeFocus, 17-21
HELP_ARRAY resource, 15-3
hEnsurePath, 17-3
hErrorDidog, 17-11
hErrs, 17-4
hGetBBWid, 17-8
hGetBWid, 17-7
hGetSwid, 17-8
hinfoPrint, 17-8
hinfoPrintErr, 17-9
hinitVis, 17-2
hLaunchDial, 17-10
hLoadChlistResBuf, 17-4
hLoadResBuf, 17-3
hLoadResource, 17-3
hSetGFont, 17-7
hSetGStyle, 17-7
hSetGTmode, 17-6
hwim.rh, 15-2
HWIMMAN, 16-1
hWservComSend, 17-2
LG DRAW, 6-11
LG SELF CHECK, 6-11
LG _SENSE WIDTH, 6-11
LG _SET_ID_POS, 6-11
LG _UPDATE, 6-11
LLEDIT resource struct, 8-18
LNCEDIT resource struct, 8-11
LODGER class

and dialog control class, 8-1
Menu options

validity checking, 5-8
MENU resource struct

and choicelist, 8-6
NCEDIT resource struct, 8-12
p_false, 17-2
p_true, 17-2
PUSH_BUT resource struct, 8-8
RGEDIT resource struct, 8-14
s .hip, 15-2
S _.rss, 15-2
SE DTEDIT struct, 8-17
SE_EDWIN struct, 8-10
SE FLEDIT struct, 8-16
SE LLEDIT struct, 8-18
SE LNCEDIT gtruct, 8-11
SE NCEDIT struct, 8-12
SE RGEDIT struct, 8-14
SE_TEXTWIN struct, 8-4
SE_WNCEDIT struct, 8-13
Subdialog, 7-22, 8-3

X _.ra 152
top-level windows, 6-4
TOPIC_ARRAY resource, 15-3
TXTMESS resource struct, 8-4
w_am, 511, 16-1
W_ws, 5-1
WN_CALC_POSITION, 6-6

and WN_POSITION, 6-6
WN_CONNECT, 6-4

and WN_POSITION, 6-6
WN_DODRAW, 6-5
WN_DRAW, 6-7, 6-8
WN_EMPHASISE, 6-5, 6-8
WN_INIT, 6-7,6-10
WN_KEY, 6-6, 7-13
WN_POSITION, 6-6
WN_REDRAW, 6-4
WN_SENSE, 6-7, 7-8
WN_SENSE HELP, 6-5, 7-13
WN_SET, 6-7, 7-7

current dialog, 17-12
WN_VISIBLE, 6-5, 6-10
WNCEDIT resource struct, 8-13
WS ALERT, 16-12
WS BACKGROUND, 16-13
WS CHANGE_CLIWIN, 16-7
WS DIAL_ENV, 16-11
WS DO DIAL, 16-7

example of use, 7-16
WS DO HELP, 16-8
WS DO_SUBMENU

example of use, 5-11
WS DYN_INIT, 16-13
WS EDIT_PDEV_SETUP, 16-12
WS EDIT_PRINT_CONTEXT, 16-12
WS _ENS PRINT_CONTEXT, 16-12
WS _ERROR_DIALOG, 16-10
WS _EVAL_ENV, 16-10
WS _EVALUATE, 16-10
WS FOREGROUND, 16-13
WS FORMAT_DIALOG, 16-11
WS FREE DIAL, 16-8
WS LOAD_CHLIST_RES, 16-8, 17-4
WS _LOCK, 16-9
WS_QUERY_DIALOG, 16-9
WS _RESET_MENUBAR, 16-9
WS _SENSE PDEV_TEXT, 16-13
WS SET MENUBAR, 16-9

example of use, 5-11
WS WRAP_PARA, 16-8
WSERYV active object class, 16-5
WSERYV window server active object, 6-1

	OBJECT ORIENTED PROGRAMMING GUIDE
	CONTENTS
	1 INTRODUCTION
	Basic concepts
	Classes
	Object creation
	Component objects
	Object destruction

	Categories
	Category handles and category numbers

	Message passing

	Notation and conventions
	Category numbers
	Class names
	Class numbers
	Method names
	Method function names
	Messages and message numbers
	Object handles
	Method function prototypes

	The basic component objects
	The application manager
	The window server object
	Resources
	The command manager
	Client window
	The engine
	Menu bar
	Dialogs

	The required files
	Category file
	Source files
	Method functions
	Main

	Resource externals file
	Application Resource file
	System resource file
	Miscellaneous files
	Icon
	Add files list
	Shell data file

	2 BUILDING AN OBJECT ORIENTED APPLICATION
	An example application
	The example source
	Building the example application

	3 BUILDING A DYNAMIC LIBRARY
	An example DYL
	The example source
	Building the example DYL
	Using the example DYL

	A DYL that supplies the ROOT class
	Building DYLs into an application
	DYL add-file lists
	Accessing a built-in DYL

	4 AN HWIM EXAMPLE - HELLO WORLD
	The category file
	The resource externals file
	The resource file
	The source code
	Building the application
	Variants

	5 COMMANDS AND COMMAND MENUS
	The command manager
	Adding command options
	Sharing method function code
	Changing the text of an option
	Disabling a menu option
	Changing the number of options in a menu
	Displaying a status window
	Application-specific initialisation
	Replacing a menu bar
	Submenus

	Shutdown messages

	6 WINDOWS
	The WIN class
	Class definition
	Property
	Window flags

	WIN methods
	Create the window's window server data
	Destroy
	System-initiated redraw
	Application-initiated redraw
	Set visibility
	Set window highlight
	Sense start id for help
	Calculate a window position
	Set window position
	Process a keypress

	Deferred WIN methods
	Initialise
	Set property
	Sense property
	Draw to existing GC

	The BWIN bordered window class
	Class definition
	Property

	BWIN methods
	Draw border
	Update border

	The LODGER class
	Class definition
	Property

	LODGER methods
	Initialise
	Destroy
	Set visibility
	Set id, position and width
	Create GC and draw
	Check content is valid

	Deferred LODGER methods
	Sense required width
	Update file name

	The draw/redraw mechanism
	Resizing a window
	Window emphasis

	7 DIALOGS
	The DLGCHAIN class
	The DLGBOX class
	Property
	Dialog box flags
	DLGBOX_ flags
	DLGBOX_ITEM_ flags

	DLGBOX methods
	Consistency checks
	Dynamic initialisation
	Handle key input
	Set item by index
	Sense item by index
	Sense item handle
	Sense item index
	Dim an item
	Lock an item
	Change the prompt for an item
	Set item flags
	Move focus to specified item
	Add an item
	Add an item by resource id
	Replace an existing item
	Specify minimum widths
	Set size of dialog
	Display 'dimmed' message
	Sense start id for Help
	Handle a keypress

	Deferred DLGBOX methods
	Item changed message
	Focus changed message
	Launch sub-dialog if required
	Create non-system dialog item

	Using dialog boxes
	Default dialog behaviour
	Dialogs and resource files
	Launching a dialog
	Simple dialogs
	Dynamically initialised dialogs
	Retrieving dialog results
	Dialogs with and without 'WAIT'
	Controlling the width of a dialog
	Subdialogs

	8 DIALOG CONTROLS
	Text windows
	Initialisation
	Setting
	Sensing

	Choice lists
	Initialisation
	Setting
	Sensing

	Push buttons and action lists
	Initialisation
	Setting and sensing

	Edit boxes
	Initialisation
	Setting
	Sensing

	LONG numeric editor
	Initialisation
	Setting
	Sensing

	Integer numeric editor
	Initialisation
	Setting
	Sensing

	WORD numeric editor
	Initialisation
	Setting
	Sensing

	Range numeric editor
	Initialisation
	Setting
	Sensing

	Floating point editor
	Initialisation
	Setting
	Sensing

	Date/time editor
	Initialisation
	Setting
	Sensing

	The Latitude/Longitude editor
	Initialisation
	Setting
	Sensing

	File name editor
	Initialisation
	Setting
	Sensing

	File name choice list
	Initialisation
	Setting
	Sensing

	9 ACTIVE OBJECTS
	Active objects and asynchronous requests
	Active object priorities
	Application responsiveness
	Background processing
	Errors

	A simple timer

	10 ERROR HANDLING AND ERROR RECOVERY
	Errors during initialisation
	General error recovery
	The roll-back principle
	Roll-back for component objects
	Other resources in an object's property
	Using the CLEANUP list

	Interactions with system code

	11 FILE-BASED APPLICATIONS
	Start-up initialisation
	Opening and creating files
	Switchfiles messages

	Saving files
	Application termination
	Shutdown messages

	12 EDIT WINDOWS
	Introduction to EDWIN
	Dialogs and edit windows contrasted
	The NOTES example program
	The “Hello World” program for edit windows
	The EHELLO category file
	Initialisation code in EHELLO
	Other code in EHELLO

	Simple use of EDWIN
	Initialising an instance of EDWIN
	The landlord of the edit window
	The IN_EDWIN and IN_EDWIN_X data structs
	The lg_set_id_pos method
	Other edit window initialisation flags
	A note on the CONTENTS field in the IN_EDWIN struct
	Values of special characters in the text
	A note on the MAXLEN field in the IN_EDWIN struct
	The wn_sense method
	The wn_set method
	The wn_key method
	The wn_emphasise method
	The wn_draw method

	Additional EDWIN methods
	The ew_insert method
	The ew_find method
	The ew_replace method
	The ew_replace_clip method
	The ew_paste_clip method
	The ew_evaluate method
	The ew_set method
	The ew_sense method
	The concept of document offset
	Allowed values of document offset
	The EDWIN.CHANGE property
	“Read-only” edit boxes and the ew_readonly method
	The ew_leave method

	Controlling the layout and formatting
	An introduction to SCRLAY
	SCRLAY structure definitions
	Example: changing visibility of special characters
	Default values of SCRLAY_STYLE in edit windows
	Changing from the default layout style
	An introduction to SCRIMG
	SCRIMG structure definitions
	Example: changing the width of the text cursor
	Changing the font used by an editor
	The ew_sense_size and ew_set_size methods
	Changing the paragraph margins
	Notifying SCRIMG of a change in style
	Initialising the SCRIMG_WIN data structure

	Direct interaction with document objects
	Setting text directly into the document object
	Dual variables at the EDWIN and SCRIMG levels
	Adjusting the cursor position
	Logical cursor movement and physical cursor movement
	Notifying SCRIMG of a change in document content
	Notifying SCRIMG of a local change in document content
	When there is a change of content and a change in cursor position
	The SCRLAY_DOC data structure
	The five soft method numbers in SCRLAY_DOC
	The SENSECHARS call-back
	Structure of SCRLAY font width tables
	The TOPARST call-back
	The ENQPAGE call-back
	The SENSEPDATA call-back
	The SENSEPLABEL call-back

	Some examples of edit-like windows
	General comments on creating edit-like windows
	The si_redraw method
	The si_emphasize method
	The si_pan method

	13 PRINTING
	Print preview
	The basic model of WDR printing
	Calculation of page breaks
	Calculation of line breaks
	Printer units
	The difference between INDENT and RIGHT, and between DOWN and HEIGHT
	Margins and page size
	The PRINTER class and storage of the ‘Print setup’ dialog settings
	Changing font or font style while printing
	The text referenced in a print element
	Limitations with the WDR_PRINT_KEEP flag
	The need to specify font and style for each line
	Use of WDR_PRINT_IDLE

	Using LPRINTER for standard printing purposes
	The syntax of the LPR_SENSE_TEXT callback
	LPRINTER and word-wrap
	Working out widths
	Launching the print setup dialog suite

	Examples of use of LPRINTER
	Framework of the example applications
	The ‘Print details’ dialog
	Startup code and WS_DYN_INIT code
	The LPRINTER initialisation code (first example)
	The LPR_SENSE_TEXT method (first example)
	Second example: additional initialisation code
	The three states in printing a two-column display
	More details about printing in columns with LPRINTER

	Advanced uses of LPRINTER - and beyond
	The LPR_READ method of LPRINTER
	LPRINTER property introduced
	The default word-wrapping algorithm
	Calculating widths of text with variable font
	Where printer font width tables come from
	LPRINTER initialisation - phase one
	A brief description of the PAGES active object class
	More about the interface to and from PAGES
	A brief description of the WDR class
	Creating and destroying WDR objects

	Using XPRINTER for print preview
	The difference between XPRINTER and LPRINTER
	Extended example of print and print preview using XPRINTER
	The category file
	Command manager
	Print details dialog
	Application initialisation
	XPRINTER subclass initialisation
	The XPRINTER LPR_SENSE_TEXT callback
	Comments on the differences between XPRINTER and LPRINTER

	WDR printing miscellany
	WDR printing classes pictorial overview
	The PDR class
	Print preview without XPRINTER
	Saving and restoring print context from file

	14 LINK PASTE
	The server side of link paste
	Creating a LINKSV subclass instance
	Declaring link paste server status
	Initialising the SYSTEM component of w_am
	The anatomy of a link paste transaction (server-side viewpoint)
	Example LINKSV code
	General remarks about link servers

	Some standard link paste data formats
	DF_LINK_TEXT and DF_LINK_PARAS contrasted
	Word wrap and link paste
	DF_LINK_TABTEXT
	The hierarchy of text types

	The client side of link paste
	Determining whether there is suitable data available
	The anatomy of a link paste transaction (client-side viewpoint)
	Simple example of use of LINKCL

	Special help with link pasting to and from edit windows
	The ew_bring_in method of EDWIN
	Simple example of calling EW_BRING_IN
	The EWLINKSV class
	The three text formats revisited

	Native formats
	Final comments

	15 HWIM RESOURCE FILES
	The application resource file
	Resource file location
	Loading an application resource
	Resource Structures

	The system resource file
	Loading a system resource
	Using system resources

	Help resources
	Using Help resources

	16 USING THE SYSTEM COMPONENTS
	The application manager
	Property
	A command line example

	Usable methods
	Record a new filename
	Load a resource
	Load a resource to a buffer
	Find application image file
	Add a task
	Wait for all activity to cease

	Replaceable methods
	Generate resource file name
	Display notifier
	Report an error

	The window server active object
	Property
	Keyboard filters
	Usable methods
	Log a new client window
	Run a dialog
	Paragraph word wrap
	Run help system
	Get choice list resource text
	Run the free-form dialling dialog
	Alter the lock count
	Set alternative menu bar
	Reset the menu bar
	Run a query dialog
	Run an error dialog
	Evaluate an expression
	Set or get evaluator environment variable
	Set or get dial environment variable
	Run the set format dialog
	Interface to wsAlert
	Ensure print context data exists
	Run print setup dialog
	Run printer configuration dialog
	Sense text for current printer device

	Replaceable methods
	Application-specific initialisation
	Foreground message
	Background message

	17 HWIM UTILITY FUNCTIONS
	General utilities
	Return TRUE
	Return FALSE
	Destroy an object
	Make a window visible
	Send command to command manager
	Ensure path exists

	Text management
	Allocate cell and load resource
	Load resource into buffer
	Load choice list item into buffer
	Generate error text
	Generate formatted string
	Generate formatted string, variable argument count
	Append ellipsis to text
	Set text mode
	Set font
	Set text style
	Get normal text width for buffer
	Get normal text width for string
	Get bold text width for buffer

	User notification
	Display an information message
	Display an error information message
	Display a busy message
	Make a beep

	Run a dialog
	Launch a dialog
	Run a confirm dialog
	Run a two-line confirm dialog
	Run an error dialog

	Dialog box utilities
	Set an item
	Set a text item
	Set text in edit window
	Set text in prompt window
	Set choice in choice list
	Set On/Off choice list to On
	Set value of numeric editor
	Set latitude/longitude editor
	Set punctuation editor
	Set floating point editor
	Set date editor
	Set range editor
	Set dialog title
	Sense an item
	Sense edit window
	Sense a choice list
	Sense a numeric editor
	Sense a range editor
	Sense a floating point editor
	Sense a latitude/longitude editor
	Sense a punctuation editor
	Sense a date editor
	Dim/undim an item
	Lock/unlock an item
	Change focus
	Set floating point editor from twips value
	Sense twips value from floating point editor

	18 APPLICATION DESIGN
	Basic design
	A typical application
	The user interface
	The engine

	The Record application
	Specification
	Top-level view
	Playing
	Recording
	Running for the first time
	Menu

	Design
	The client window
	The bar graph
	The engine
	Dialogs
	The application manager

	Appendix A - CATEGORY FILES
	Category file content
	Class definition

	Sub-category files
	Using sub-category files

	Category translation
	The .ext external reference file
	The .c C language category source file
	The .g C language include file
	The .asm assembly language category source file
	The .ing assembly language include file
	The .lis category listing file
	The .c skeleton method function source file

	Appendix B - METHOD FUNCTION SOURCE FILES
	Method function parameters
	Calling conventions and function order

	Appendix C - MECHANISMS
	Classes
	Class descriptor
	Object creation

	Categories
	Category handles and category numbers

	Dynamic linkage
	Referencing by category handle

	Message passing
	Calling conventions for method functions
	Method parameters

	INDEX

